YoVDO

Coping with Missing, Invalid, and Duplicate Data in R

Offered By: Pluralsight

Tags

R Programming Courses Data Preparation Courses Data Analytics Courses

Course Description

Overview

Learn about the most essential steps of data preparation: Missing value imputation, outlier detection, and duplicate removal.

Data preparation is part of nearly any data analytics project, therefore the skills are highly valuable. In this course, Coping with Missing, Invalid, and Duplicate Data in R, you will learn the main steps of data preparation. First, you will learn how to handle duplicate data. Next, you will discover that missing values prevent a lot of R functions from working properly, therefore you are limited in your R toolset as long as you do not take care of all these NA's. Finally, you will explore outlier and invalid data detection and how they can introduce bias into your analysis. When you’re finished with this course, you will understand why missing values, outliers, and duplicates are problematic, how to detect them, and how to remove them from the dataset.

Taught by

Martin Burger

Related Courses

Passion Driven Statistics
Wesleyan University via Coursera
Machine Learning With Big Data
University of California, San Diego via Coursera
Big Data - Capstone Project
University of California, San Diego via Coursera
Data Science at Scale - Capstone Project
University of Washington via Coursera
Анализ данных: финальный проект
Moscow Institute of Physics and Technology via Coursera