Cleaning Data: Python Data Playbook
Offered By: Pluralsight
Course Description
Overview
Cleaning the dataset is an essential part of any data project, but it can be challenging. This course will teach you the basics of cleaning datasets with pandas, and will teach you techniques that you can apply immediately in real world projects.
At the core of any successful project that involves a real world dataset is a thorough knowledge of how to clean that dataset from missing, bad, or inaccurate data. In this course, Cleaning Data: Python Data Playbook, you'll learn how to use pandas to clean a real world dataset. First, you'll learn how to understand, view, and explore the data you have. Next, you'll explore how to access just the data that you want to keep in your dataset. Finally, you'll discover different ways to handle bad and missing data. When you're finished with this course, you'll have a foundational knowledge of cleaning real world datasets with pandas that will help you as you move forward to working on real world data science or machine learning problems.
Topics:
At the core of any successful project that involves a real world dataset is a thorough knowledge of how to clean that dataset from missing, bad, or inaccurate data. In this course, Cleaning Data: Python Data Playbook, you'll learn how to use pandas to clean a real world dataset. First, you'll learn how to understand, view, and explore the data you have. Next, you'll explore how to access just the data that you want to keep in your dataset. Finally, you'll discover different ways to handle bad and missing data. When you're finished with this course, you'll have a foundational knowledge of cleaning real world datasets with pandas that will help you as you move forward to working on real world data science or machine learning problems.
Topics:
- Course Overview
- Understanding Your Data
- Removing and Fixing Columns with pandas
- Indexing and Filtering Datasets
- Handling Bad, Missing, and Duplicate Data
Taught by
Chris Achard
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent