YoVDO

Performing Confirmatory Data Analysis in R

Offered By: Coursera Project Network via Coursera

Tags

Data Analysis Courses R Programming Courses Regression Analysis Courses Hypothesis Testing Courses Data Interpretation Courses Correlation Analysis Courses

Course Description

Overview

Welcome to this project-based course Performing Confirmatory Data Analysis in R. In this project, you will learn how to perform extensive confirmatory data analysis, which is similar to performing inferential statistics in R. By the end of this 2-hour long project, you will understand how to perform chi-square tests, which includes, the goodness of fit test, test for independence, and test for homogeneity. Also, you will learn how to calculate correlation for numeric variables and perform regression analysis. Also, you will learn how to interpret the results of a test and make viable decisions. By extension, you will learn how to explore some built-in R datasets to perform the different tests. Note, you do not need to be a data scientist or statistical analyst to be successful in this guided project, just a familiarity with basic statistics and performing hypothesis test in R suffice for this project. A fundamental prerequisite is having a good understanding of the theory of hypothesis test. So, I recommend that you should take the Hypothesis Testing in R project before taking this project.

Syllabus

  • Project Overview
    • Welcome to this project-based course Performing Confirmatory Data Analysis in R. In this project, you will learn how to perform extensive confirmatory data analysis, which is similar to performing inferential statistics in R. By the end of this 2-hour long project, you will understand how to perform chi-square tests, which includes, the goodness of fit test, test for independence, and test for homogeneity. Also, you will learn how to calculate correlation for numeric variables and perform regression analysis. Also, you will learn how to interpret the results of a test and make viable decisions. By extension, you will learn how to explore some built-in R datasets to perform the different tests. Note, you do not need to be a data scientist or statistical analyst to be successful in this guided project, just a familiarity with basic statistics and performing hypothesis test in R suffice for this project. A very important prerequisite is having a good understanding of the theory of hypothesis test. So, I recommend that you should take the Hypothesis Testing in R project before taking this project.

Taught by

Arimoro Olayinka Imisioluwa

Related Courses

Statistics One
Princeton University via Coursera
Intro to Statistics
Stanford University via Udacity
Structural Equation Model and its Applications | 结构方程模型及其应用 (普通话)
The Chinese University of Hong Kong via Coursera
Statistics in Medicine
Stanford University via Stanford OpenEdx
Análisis Estadístico Básico con SPSS
Universidad de Cantabria via Miríadax