Computational Neuroscience: Neuronal Dynamics of Cognition
Offered By: École Polytechnique Fédérale de Lausanne via edX
Course Description
Overview
What happens in your brain when you make a decision? And what happens if you recall a memory from your last vacation? Why is our perception of simple objects sometimes strangely distorted? How can millions of neurons in the brain work together without a central control unit?
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to answer the above questions. The core of the answer to cognition may lie in the collective dynamics of thousands of interacting neurons - and these dynamics are mathematically analyzed in this course using methods such as mean-field theory and non-linear differential equations.
Syllabus
Textbook:
Neuronal Dynamics - from single neurons to networks and models of cognition (W. Gerstner, W.M. Kistler, R. Naud and L. Paninski), Cambridge Univ. Press. 2014
online version: http://neuronaldynamics.epfl.ch/
The course will be based on Chapters 12 and 16-19.
Overview of contents over 6 weeks:
A) Associative Memory and Hopfield Model
B) Attractor networks and spiking neurons
C) Neuronal populations and mean-field theory
D) Perception and cortical field models
E) Decision making and competitive dynamics
F) Synaptic Plasticity and learning
Total duration and workload:
6 weeks of video lectures. Each weak comprises a series of 5-8 videos. Viewing time about 60-90 minutes per week. Self-learning time 90 minutes per week. Online exercises, quizzes, and a final exam.
Taught by
Wulfram Gerstner