Natural Language Processing for Stocks News Analysis
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this hands-on project, we will train a Long Short Term Memory (LSTM) deep learning model to perform stocks sentiment analysis. Natural language processing (NLP) works by converting words (text) into numbers, these numbers are then used to train an AI/ML model to make predictions. In this project, we will build a machine learning model to analyze thousands of Twitter tweets to predict people’s sentiment towards a particular company or stock. The algorithm could be used automatically understand the sentiment from public tweets, which could be used as a factor while making buy/sell decision of securities.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Taught by
Ryan Ahmed
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent