18.03x Differential Equations
Offered By: Massachusetts Institute of Technology via edX
Course Description
Overview
Differential equations are the language of the models that we use to describe the world around us. In this series, we will explore temperature, spring systems, circuits, population growth, biological cell motion, and much more to illustrate how differential equations can be used to model nearly everything.
We will develop the mathematical tools needed to solve linear differential equations, understand 2x2 systems of first-order linear and nonlinear differential equations. We will use linear algebra to solve systems of more than two differential equations. As well as, explore the use of Fourier series to analyze the behavior of and solve ordinary differential equations (ODEs) and separable partial differential equations (PDEs). In the last course of the series, we will consider frequency domain and Laplace transform to help us appreciate their effects on mechanical and electrical systems.
Learner Testimonials
"Wonderful course on differential equations. The teachers provide a nice computational tool to depict the dynamics of solving the equations, which is very useful for students to grasp the key ideas and concepts.” - Jiting (completed this course, spending 10 hours a week on it and found the course difficulty to be medium)
"Interesting course. Lectures, homeworks and review exercises of any part are really well setup. One of the best MOOC on topic of differential equations." - Gaetano (completed this course, spending 4 hours a week on it and found the course difficulty to be medium)
"Another excellent course from MIT. The lecture videos are excellent and so are the exercises. This course also has MATLAB based exercises which is wonderful. The problem sets are excellent and so are the staff and the community teaching assistants who are always there to help any time." - Dna47a (completed this course, spending 8 hours a week on it and found the course difficulty to be medium)
Syllabus
Course 1: Introduction to Differential Equations
Scientists and engineers understand the world through differential equations. You can too.
Course 2: Differential Equations: 2x2 Systems
In order to understand most phenomena in the world, we need to understand not just single equations, but systems of differential equations. In this course, we start with 2x2 systems.
Course 3: Differential Equations: Linear Algebra and NxN Systems of Differential Equations
Learn how to use linear algebra and MATLAB to solve large systems of differential equations.
Course 4: Differential Equations: Fourier Series and Partial Differential Equations
Learn to use Fourier series to solve differential equations with periodic input signals and to solve boundary value problems involving the heat equation and wave equation.
Course 5: Transfer Functions and the Laplace Transform
An intro to the mysteries of the frequency domain and Laplace transform and how they're used to understand mechanical and electrical systems.
Courses
-
This course is about the Laplace Transform, a single very powerful tool for understanding the behavior of a wide range of mechanical and electrical systems: from helicopters to skyscrapers, from light bulbs to cell phones. This tool captures the behavior of the system and displays it in highly graphical form that is used every day by engineers to design complex systems.
This course is centered on the concept of the transfer function of a system. Also called the system function, the transfer function completely describes the response of a system to any input signal in a highly conceptual manner. This visualization occurs not in the time domain, where we normally observe behavior of systems, but rather in the “frequency domain.” We need a device for moving from the time domain to the frequency domain; this is the Laplace transform.
We will illustrate these principles using concrete mechanical and electrical systems such as tuned mass dampers and RLC circuits.
The five modules in this series are being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules.
---
Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.
-
Differential equations are the language of the models we use to describe the world around us. Most phenomena require not a single differential equation, but a system of coupled differential equations. In this course, we will develop the mathematical toolset needed to understand 2x2 systems of first order linear and nonlinear differential equations. We will use 2x2 systems and matrices to model:
- predator-prey populations in an ecosystem,
- competition for tourism between two states,
- the temperature profile of a soft boiling egg,
- automobile suspensions for a smooth ride,
- pendulums, and
- RLC circuits that tune to specific frequencies.
The five modules in this seriesare being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules.
- Wolf photo by Arne von Brill on Flickr (CC BY 2.0)
- Rabbit photo by Marit & Toomas Hinnosaar on Flickr (CC BY 2.0)
---
Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.
-
Differential equations are the mathematical language we use to describe the world around us. Most phenomena can be modeled not by single differential equations, but by systems of interacting differential equations. These systems may consist of many equations. In this course, we will learn how to use linear algebra to solve systems of more than 2 differential equations. We will also learn to use MATLAB to assist us.
We will use systems of equations and matrices to explore:
- The original page ranking systems used by Google,
- Balancing chemical reaction equations,
- Tuned mass dampers and other coupled oscillators,
- Threeor more species competing for resources in an ecosystem,
- The trajectory of a rider on a zipline.
The five modules in this seriesare being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules.
*Zipline photo by teanitiki on Flickr (CC BY-SA 2.0)
---
Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.
-
Differential equations are the mathematical language we use to describe the world around us. Many phenomena are not modeled by differential equations, but by partial differential equations depending on more than one independent variable. In this course, we will use Fourier series methods to solve ODEs and separable partial differential equations (PDEs). You will learn how to describe any periodic function using Fourier series, and will be able to use resonance and to determine the behavior of systems with periodic input signals that can be described in terms of Fourier series. This course will use MATLAB to assist computations.
In this course we will explore:
- How to process noisy sound files
- The way a beam bends in response to external forces
- How to design of ovens to create strong but lightweight composites
- The motion of a violin string
The five modules in this seriesare being offered as an XSeries on edX. Please visit theDifferential EquationsXSeries Program Pageto learn more and to enroll in the modules.
Violinist photo by user: DeshaCAM. Copyright © 2018 Adobe Systems Incorporated. Used with permission.
---
Please note: edX Inc. has recently entered into an agreement to transfer the edX platform to 2U, Inc., which will continue to run the platform thereafter. The sale will not affect your course enrollment, course fees or change your course experience for this offering. It is possible that the closing of the sale and the transfer of the edX platform may be effectuated sometime in the Fall while this course is running. Please be aware that there could be changes to the edX platform Privacy Policy or Terms of Service after the closing of the sale. However, 2U has committed to preserving robust privacy of individual data for all learners who use the platform. For more information see the edX Help Center.
Taught by
Arthur Mattuck, Haynes Miller, Jeremy Orloff, Bjorn Poonen, Jennifer French, Kristin Kurianski and David Jerison
Tags
Related Courses
DIFFERENTIAL EQUATIONSFoothill College via California Community Colleges System Advanced Course on Partial Differential Equations - II
Indian Institute of Science Bangalore via Swayam Basics of Finite Element Analysis - I
Indian Institute of Technology Kanpur via Swayam Differential Equations
CEC via Swayam Finite Element Method
Indian Institute of Technology, Kharagpur via Swayam