YoVDO

Atomic and Optical Physics II

Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare

Tags

Physics Courses Quantum Physics Courses Atomic Physics Courses Optical Physics Courses Metrology Courses

Course Description

Overview

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.

Syllabus

1. Introduction to Atomic Physics.
2. QED Hamiltonian.
3. Quantum description of light, Part 1.
3. Quantum description of light, Part 2.
4. Non-classical light, squeezing, Part 1.
4. Non-classical light, squeezing, Part 2.
5. Single photons, Part 1.
5. Single photons, Part 2.
6. Entangled states.
7. Metrology, shot noise and Heisenberg limit, Part 1.
7. Metrology, shot noise and Heisenberg limit, Part 2.
8. g(2) for atoms and light.
9. Diagrams for light-atom interactions.
10. van der Waals and Casimir interactions.
11. Casimir force.
12. Resonant interactions.
13. Derivation of optical Bloch equations.
14. Solutions of optical Bloch equations, Part 1.
14. Solutions of optical Bloch equations, Part 2.
15. Unraveling Open System Quantum Dynamics.
16. Light forces, Part 1.
16. Light forces, Part 2.
17. Dressed atom, Part 1.
17. Dressed atom, Part 2.
18. Techniques for ultralow temperatures.
19. Bose gases.
20. Fermi gases, BEC-BCS crossover.
21. Ion trapping and quantum gates.


Taught by

Prof. Wolfgang Ketterle

Tags

Related Courses

Networked Life
University of Pennsylvania via Coursera
Intro to Physics
Udacity
How Things Work: An Introduction to Physics
University of Virginia via Coursera
Solar: Solar Cells, Fuel Cells and Batteries
Stanford University via Stanford OpenEdx
A Look at Nuclear Science and Technology
University of Pittsburgh via Coursera