Discrete Stochastic Processes
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Introduction and Probability Review.
2. More Review; The Bernoulli Process.
3. Law of Large Numbers, Convergence.
4. Poisson (the Perfect Arrival Process).
5. Poisson Combining and Splitting.
6. From Poisson to Markov.
7. Finite-state Markov Chains; The Matrix Approach.
8. Markov Eigenvalues and Eigenvectors.
9. Markov Rewards and Dynamic Programming.
10. Renewals and the Strong Law of Large Numbers.
11. Renewals: Strong Law and Rewards.
12. Renewal Rewards, Stopping Trials, and Wald's Inequality.
13. Little, M/G/1, Ensemble Averages.
14. Review.
15. The Last Renewal.
16. Renewals and Countable-state Markov.
17. Countable-state Markov Chains.
18. Countable-state Markov Chains and Processes.
19. Countable-state Markov Processes.
20. Markov Processes and Random Walks.
21. Hypothesis Testing and Random Walks.
22. Random Walks and Thresholds.
23. Martingales (Plain, Sub, and Super).
24. Martingales: Stopping and Converging.
25. Putting It All Together.
Taught by
Prof. Robert Gallager
Tags
Related Courses
Introduction to Statistics: ProbabilityUniversity of California, Berkeley via edX Aléatoire : une introduction aux probabilités - Partie 1
École Polytechnique via Coursera Einführung in die Wahrscheinlichkeitstheorie
Johannes Gutenberg University Mainz via iversity Combinatorics and Probability
Moscow Institute of Physics and Technology via Coursera Probability
University of Pennsylvania via Coursera