Design and Analysis of Algorithms
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Course Overview, Interval Scheduling.
2. Divide & Conquer: Convex Hull, Median Finding.
R1. Matrix Multiplication and the Master Theorem.
3. Divide & Conquer: FFT.
R2. 2-3 Trees and B-Trees.
4. Divide & Conquer: van Emde Boas Trees.
5. Amortization: Amortized Analysis.
6. Randomization: Matrix Multiply, Quicksort.
R4. Randomized Select and Randomized Quicksort.
7. Randomization: Skip Lists.
8. Randomization: Universal & Perfect Hashing.
R5. Dynamic Programming.
9. Augmentation: Range Trees.
10. Dynamic Programming: Advanced DP.
11. Dynamic Programming: All-Pairs Shortest Paths.
12. Greedy Algorithms: Minimum Spanning Tree.
R6. Greedy Algorithms.
13. Incremental Improvement: Max Flow, Min Cut.
14. Incremental Improvement: Matching.
R7. Network Flow and Matching.
15. Linear Programming: LP, reductions, Simplex.
16. Complexity: P, NP, NP-completeness, Reductions.
R8. NP-Complete Problems.
17. Complexity: Approximation Algorithms.
18. Complexity: Fixed-Parameter Algorithms.
R9. Approximation Algorithms: Traveling Salesman Problem.
19. Synchronous Distributed Algorithms: Symmetry-Breaking. Shortest-Paths Spanning Trees.
20. Asynchronous Distributed Algorithms: Shortest-Paths Spanning Trees.
R10. Distributed Algorithms.
21. Cryptography: Hash Functions.
22. Cryptography: Encryption.
R11. Cryptography: More Primitives.
23. Cache-Oblivious Algorithms: Medians & Matrices.
24. Cache-Oblivious Algorithms: Searching & Sorting.
Taught by
MIT OpenCourseWare
Tags
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX