Biological Chemistry II
Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare
Course Description
Overview
Syllabus
1. Introduction to Biological Chemistry II.
2. Protein Synthesis 1.
R1. Determining, Analyzing, and Understanding Protein Structures.
3. Protein Synthesis 2.
4. Protein Synthesis 3.
5. Protein Synthesis 4.
R2. Pre-Steady State and Steady-State Kinetic Methods Applied to Translation.
6. Protein Synthesis 5.
7. Protein Synthesis 6.
8. Protein Folding 1.
R3. Pre-Steady State and Steady-State Kinetic Methods Applied to Translation.
9. Protein Folding 2.
10. Protein Folding 3.
11. Protein Folding 4.
R4. Purification of Native and Mutant Ribosomes, Protein Purification.
12. Protein Degradation 1.
13. Protein Degradation 2.
14. Protein Degradation 3.
R5. Overview of Cross-Linking, Including Photo-Reactive Cross-Linking Methods.
15. PK and NRP Synthases 1.
16. PK and NRP Synthases 2.
R6. Macromolecular Electron Microscopy Applied to Fatty Acid Synthase.
17. PK and NRP Synthases 3.
18. PK and NRP Synthases 4.
R7. Application of Single Molecule Methods.
19. Cholesterol Biosynthesis 1.
20. Cholesterol Biosynthesis 2.
21. Cholesterol Biosynthesis 3 & Cholesterol Homeostasis 1.
R8. Application of CRISPR to Study Cholesterol Regulation.
22. Cholesterol Homeostasis 2.
23. Cholesterol Homeostasis 3.
24. Cholesterol Homeostasis 4.
R9. Cholesterol Homeostasis and Sensing.
25. Cholesterol Homeostasis 5 & Metal Ion Homeostasis 1.
26. Metal Ion Homeostasis 2.
27. Metal Ion Homeostasis 3.
R10. Metal-Binding Studies and Dissociation Constant Determination.
28. Metal Ion Homeostasis 4.
29. Metal Ion Homeostasis 5.
R11. Mass Spectrometry.
30. Metal Ion Homeostasis 6.
31. Metal Ion Homeostasis 7 & Reactive Oxygen Species 1.
R12. Mass Spectrometry of the Cysteine Proteome.
32. Reactive Oxygen Species 2.
33. Reactive Oxygen Species 3.
34. Reactive Oxygen Species 4 & Nucleotide Metabolism 1.
R13. Fluorescence Methods.
35. Nucleotide Metabolism 2.
36. Nucleotide Metabolism 3.
Taught by
Prof. JoAnne Stubbe and Prof. Elizabeth Nolan
Tags
Related Courses
Preparation for Introductory Biology: DNA to OrganismsUniversity of California, Irvine via Coursera Virology I: How Viruses Work
Columbia University via Coursera The Chemistry of Life
Kyoto University via edX Molecular Biology – Part 3: RNA Processing and Translation
Massachusetts Institute of Technology via edX Life in the Universe: Syntheses for Life
Seoul National University via edX