YoVDO

Computational Science and Engineering I

Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare

Tags

Linear Algebra Courses Graph Theory Courses Differential Equations Courses Convolution Courses Fourier Transform Courses Finite Element Method Courses Eigenvalues Courses Laplace's Equation Courses

Course Description

Overview

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: differential equations of equilibrium; Laplace's equation and potential flow; boundary-value problems; minimum principles and calculus of variations; Fourier series; discrete Fourier transform; convolution; and applications. Note: This course was previously called "Mathematical Methods for Engineers I."

Syllabus

  • Course Introduction
  • Lecture 1: Four Special Matrices
  • Recitation 1: Key Ideas of Linear Algebra
  • Transcript – Lecture 1
  • Transcript – Recitation 1
  • Lecture 2: Differential Eqns and Difference Eqns
  • Recitation 2
  • Transcript – Lecture 2
  • Transcript – Recitation 2
  • Lecture 3: Solving a Linear System
  • Recitation 3
  • Transcript – Lecture 3
  • Transcript – Recitation 3
  • Lecture 4: Delta Function Day
  • Recitation 4
  • Transcript – Lecture 4
  • Transcript – Recitation 4
  • Lecture 5: Eigenvalues (Part 1)
  • Recitation 5
  • Transcript – Lecture 5
  • Transcript – Recitation 5
  • Lecture 6: Eigen Values (part 2) and Positive Definite (part 1)
  • Recitation 6
  • Transcript – Lecture 6
  • Transcript – Recitation 6
  • Lecture 7: Positive Definite Day
  • Recitation 7
  • Transcript – Lecture 7
  • Transcript – Recitation 7
  • Lecture 8: Springs and Masses
  • Recitation 8
  • Transcript – Lecture 8
  • Transcript – Recitation 8
  • Lecture 9: Oscillation
  • Recitation 9
  • Transcript – Lecture 9
  • Transcript – Recitation 9
  • Lecture 10: Finite Differences in Time
  • Recitation 10
  • Transcript – Lecture 10
  • Transcript – Recitation 10
  • Lecture 11: Least Squares (part 2)
  • Recitation 11
  • Transcript – Lecture 11
  • Transcript – Recitation 11
  • Lecture 12: Graphs and Networks
  • Recitation 12
  • Transcript – Lecture 12
  • Transcript – Recitation 12
  • Lecture 13: Kirchhoff's Current Law
  • Recitation 13
  • Transcript – Lecture 13
  • Transcript – Recitation 13
  • Lecture 14: Exam Review
  • Transcript – Lecture 14
  • Lecture 15: Trusses and A^(T)CA
  • Transcript – Lecture 15
  • Lecture 16: Trusses (part 2)
  • Transcript – Lecture 16
  • Lecture 17: Finite Elements in 1D (part 1)
  • Transcript – Lecture 17
  • Lecture 18: Finite Elements in 1D (part 2)
  • Transcript – Lecture 18
  • Lecture 19: Quadratic/Cubic Elements
  • Transcript – Lecture 19
  • Lecture 20: Element Matrices; 4th Order Bending Equations
  • Transcript – Lecture 20
  • Lecture 21: Boundary Conditions, Splines, Gradient, Divergence
  • Transcript – Lecture 21
  • Lecture 22: Gradient and Divergence
  • Transcript – Lecture 22
  • Lecture 23: Laplace's Equation
  • Transcript – Lecture 23
  • Lecture 24: Laplace's Equation (part 2)
  • Transcript – Lecture 24
  • Lecture 25: Fast Poisson Solver (part 1)
  • Transcript – Lecture 25
  • Lecture 26: Fast Poisson Solver (part 2); Finite Elements in 2D
  • Transcript – Lecture 26
  • Lecture 27: Finite Elements in 2D (part 2)
  • Transcript – Lecture 27
  • Lecture 28: Fourier Series (part 1)
  • Transcript – Lecture 28
  • Lecture 29: Fourier Series (part 2)
  • Transcript – Lecture 29
  • Lecture 30: Discrete Fourier Series
  • Transcript – Lecture 30
  • Lecture 31: Fast Fourier Transform, Convolution
  • Transcript – Lecture 31
  • Lecture 32: Convolution (part 2), Filtering
  • Transcript – Lecture 32
  • Lecture 33: Filters, Fourier Integral Transform
  • Transcript – Lecture 33
  • Lecture 34: Fourier Integral Transform (part 2)
  • Transcript – Lecture 34
  • Lecture 35: Convolution Equations: Deconvolution
  • Transcript – Lecture 35
  • Lecture 36: Sampling Theorem
  • Transcript – Lecture 36

Taught by

Prof. Gilbert Strang

Tags

Related Courses

Fundamentals of Digital Image and Video Processing
Northwestern University via Coursera
Signals and Systems, Part 1
Indian Institute of Technology Bombay via edX
Getting started in cryo-EM
California Institute of Technology via Coursera
Networks and Systems
Indian Institute of Technology Madras via Swayam
MRI Fundamentals
Korea Advanced Institute of Science and Technology via Coursera