Машинное обучение в финансах
Offered By: Sberbank Corporate University via Coursera
Course Description
Overview
Машинное обучение (Machine Learning, или ML) — это дисциплина о том, как на основе различных алгоритмов обучить компьютер распознавать, классифицировать и предсказывать объекты. Машинное обучение подарило нам эффективный поиск и персонализированный контент в интернете, а в последнее время активно используется в финансах и банковской сфере — наш курс именно об этом!
Применение методов ML помогает банку более оперативно принимать решения. Сможет ли вернуть кредит конкретный клиент? Как изменится объем вкладов и кредитов в ближайшей перспективе? Как оптимизировать внутренние процессы? Эти и многие другие проблемы финансовой сферы помогают решать на практике передовые методы ML.
Если вы студент и видите свое будущее в ML в финансах, но еще не до конца понимаете, чем будете заниматься; или уже работаете в банковской/IT сфере и хотите улучшить свои знания и квалификацию, а может быть, вы просто активно интересуетесь последними тенденциями применения ML — добро пожаловать на онлайн-курс «Машинное обучение в финансах» от команды финансистов Сбербанка!
Наш курс практико-ориентированный: вы узнаете о внедрении и применении ML на примере трейдинга, прогнозировании операционного дохода банка, автоматизации внутренних процессов и др., а также пройдете несколько практических заданий с использованием языка программирования Python. На второй неделе курса используется вероятностный язык программирования Stan. В лекциях и домашних заданиях по прогнозированию представлены базовые примеры моделей в Stan и ссылки на более детальное ознакомление с языком. Освоив эту программу, слушатель научится применять на практике многие методы ML и получит конкурентное преимущество для трудоустройства в финансовой и IT сфере.
Применение методов ML помогает банку более оперативно принимать решения. Сможет ли вернуть кредит конкретный клиент? Как изменится объем вкладов и кредитов в ближайшей перспективе? Как оптимизировать внутренние процессы? Эти и многие другие проблемы финансовой сферы помогают решать на практике передовые методы ML.
Если вы студент и видите свое будущее в ML в финансах, но еще не до конца понимаете, чем будете заниматься; или уже работаете в банковской/IT сфере и хотите улучшить свои знания и квалификацию, а может быть, вы просто активно интересуетесь последними тенденциями применения ML — добро пожаловать на онлайн-курс «Машинное обучение в финансах» от команды финансистов Сбербанка!
Наш курс практико-ориентированный: вы узнаете о внедрении и применении ML на примере трейдинга, прогнозировании операционного дохода банка, автоматизации внутренних процессов и др., а также пройдете несколько практических заданий с использованием языка программирования Python. На второй неделе курса используется вероятностный язык программирования Stan. В лекциях и домашних заданиях по прогнозированию представлены базовые примеры моделей в Stan и ссылки на более детальное ознакомление с языком. Освоив эту программу, слушатель научится применять на практике многие методы ML и получит конкурентное преимущество для трудоустройства в финансовой и IT сфере.
Syllabus
- Введение в машинное обучение
- Подходы, используемые для моделирования показателей. В чем особенность применения ML по сравнению с эконометрическими подходами. Особенности производственного цикла по разработке моделей в финансовых организациях.
- Прогнозирование с помощью методов машинного обучения
- Применение методов машинного обучения и эконометрики в прогнозировании финансовых показателей коммерческих банков. Выполнение задач по прогнозированию балансовых показателей банков, применению гауссовских процессов в моделировании временных рядов, и прогнозированию показателей прибыльности.
- Трейдинг и оптимальное управление в финансах
- В первой части вы познакомитесь с кейсами по применению методов Reinforcement Learning (Обучение с подкреплением) для решения задач оптимального управления, а во второй – с применением передовых методов анализа данных в задачах трейдинга.
- Natural Language Processing
- Применение методов машинного обучения для улучшения клиентского опыта с помощью методов Natural Language Processing (на примере виртуальных персональных ассистентов, чат-ботов)
- Применение методов машинного обучения в анализе процессов
- Использование process mining для повышения эффективности различных процессов финансовой организации. Мы рассмотрим конкретный кейс по процессу «Оплата счетов сторонних организаций и причина несогласований сотрудниками оплаты счета».
- Прогнозирование макроэкономических показателей
- На настоящий момент одна из самых амбициозных задач, которая ставится перед аналитиками – попытка предсказать различные макроэкономические показатели. Мы рассмотрим конкретный кейс прогнозирования инфляции.
Taught by
Ия Малахова, Андрей Духовный and Владимир Власов
Tags
Related Courses
Networked LifeUniversity of Pennsylvania via Coursera Introduction to Finance
University of Michigan via Coursera Computational Investing, Part I
Georgia Institute of Technology via Coursera Finance
Stanford University via NovoEd The Role of the Renminbi in the International Monetary System
The Chinese University of Hong Kong via Coursera