YoVDO

Machine/Deep Learning for Mining Quality Prediction-Enhanced

Offered By: Coursera Project Network via Coursera

Tags

Machine Learning Courses Data Analysis Courses Data Visualization Courses Deep Learning Courses Decision Trees Courses Gradient Boosting Courses

Course Description

Overview

In this hands-on project, we will train machine learning and deep learning models to predict the % of Silica Concentrate in the Iron ore concentrate per minute. This project could be practically used in Mining Industry to get the % Silica Concentrate at much faster rate compared to the traditional methods.

Syllabus

  • Project Overview
    • In this hands-on project, we will train machine learning and deep learning models to predict the % of Silica Concentrate in the Iron ore concentrate per minute. This project could be practically used in Mining Industry to get the % Silica Concentrate at a much faster rate compared to the traditional methods. In this hands-on project we will go through the following tasks: (1) Understand the Problem Statement, (2) Import libraries and datasets, (3) Perform Exploratory Data Analysis, (4) Perform Data Visualization, (5) Create Training and Testing Datasets, (6) Train and Evaluate a Gradient Boosting Regressor Model, (7) Train and Evaluate a Decision Tree Regressor Model,(8) Train and Evaluate a Random Forest Regressor Model, (9) Train and Evaluate an Artificial Neural Network Model, (10) Calculate and Print Regression model KPIs.

Taught by

Ryan Ahmed

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent