머신 러닝 프로젝트 구조화
Offered By: DeepLearning.AI via Coursera
Course Description
Overview
딥 러닝 전문화 과정의 세 번째 과정에서는 성공적인 머신 러닝 프로젝트를 구축하고 머신 러닝 프로젝트 리더로서 의사 결정을 연습하는 방법을 배우게 됩니다.
이 과정을 마치면 머신 러닝 시스템의 오류를 진단할 수 있고, 오류를 줄이기 위한 전략의 우선 순위를 지정하고, 일치하지 않는 training/test set와 같은 복합적인 ML 설정을 이해하며 휴먼 레벨의 성능에 필적 및/또는 능가하는 ML 설정을 이해하고, 종단 간 학습, 전이 학습, 멀티 태스크 러닝을 적용할 수 있게 됩니다.
이는 또한 기본적인 머신 러닝 지식이 있는 학습자를 위한 독립형 과정입니다. 이 과정에서는 많은 딥 러닝 제품을 구축하고 출시한 Andrew Ng의 경험을 활용합니다. AI 팀의 방향을 제시할 수 있는 기술 리더가 되고 싶다면 이 과정은 수년간의 ML 업무 경험을 거친 후에 얻을 수 있는 ‘산업 경험’을 제공해드립니다.
딥 러닝 전문화 과정은 딥 러닝의 기능, 도전 과제 및 결과를 이해하고 첨단 AI 기술 개발에 참여할 수 있도록 준비하는 데 도움이 되는 기본 프로그램입니다. 머신 러닝을 업무에 적용하고, 기술 경력의 수준을 높이고, AI 세계의 최종적인 단계를 밟을 수 있는 지식과 기술을 쌓을 수 있는 경로를 제공합니다.
Syllabus
- ML 전략(1)
- 목표 설정을 위한 전략적 지침을 구현하고 휴먼 레벨의 성능을 적용하여 주요 우선 순위를 정의함으로써 ML 프로덕션 워크플로를 간소화하고 최적화합니다.
- ML 전략(2)
- 시간을 절약할 수 있는 오류 분석 절차를 개발하여 추구할 가치가 가장 높은 옵션을 평가하고 데이터를 분할하는 방법과 멀티 태스크, 전이 및 종단간 딥 러닝을 사용할 시기에 대한 직관력을 가지게 됩니다.
Taught by
Andrew Ng
Related Courses
4.0 Shades of Digitalisation for the Chemical and Process IndustriesUniversity of Padova via FutureLearn A Day in the Life of a Data Engineer
Amazon Web Services via AWS Skill Builder FinTech for Finance and Business Leaders
ACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Accounting Data Analytics
Coursera