YoVDO

SPSS Statistics Essential Training

Offered By: LinkedIn Learning

Tags

SPSS Courses Statistics & Probability Courses Data Analysis Courses Data Visualization Courses Descriptive Statistics Courses Classification Courses Data Wrangling Courses Data Manipulation Courses Clustering Courses Data Exploration Courses

Course Description

Overview

Learn all the essentials of using SPSS, a statistical software suite for data management and advanced analytics.

Syllabus

Introduction
  • Welcome to SPSS
  • Using the exercise files
1. What Is SPSS?
  • SPSS in context
  • Versions, releases, licenses, and interfaces
2. Getting Started
  • Navigating SPSS
  • Sample datasets
  • Data types, measures, and roles
  • Options and preferences
  • Saving and running syntax files
3. Data Visualization
  • Visualizing data with Graphboard Templates
  • Using legacy dialogs: Boxplots for multiple variables
4. Data Wrangling
  • Importing data
  • Variable labels
  • Value labels
5. Recoding Data
  • Recoding variables
  • Reversing values with syntax
  • Computing scores
6. Exploring Data
  • Computing frequencies
  • Computing descriptives
  • Exploratory data analysis
  • Computing correlations
  • Computing contingency tables
7. Analyzing Data
  • Comparing proportions
  • Comparing one mean to a population: One-sample T test
  • Comparing paired means: Paired-samples T test
  • Comparing two means: Independent-samples T test
  • Comparing multiple means: One-Way ANOVA
  • Comparing means with two categorical variables: ANOVA
  • Computing a linear regression
8. Sharing Your Work
  • Exporting charts and tables
9. Continuing Your SPSS Learning Journey
  • Next steps and additional resources

Taught by

Barton Poulson

Related Courses

Excel 2010
Miríadax
Intro to Data Science
Udacity
Data Manipulation at Scale: Systems and Algorithms
University of Washington via Coursera
Statistical Computing with R - a gentle introduction
University College London via Independent
Introducción a Data Science: Programación Estadística con R
Universidad Nacional Autónoma de México via Coursera