Reinforcement Learning Foundations
Offered By: LinkedIn Learning
Course Description
Overview
Learn the basics of reinforcement learning (RL), including the terminology, the kinds of problems you can solve with RL, and the different methods for solving those problems.
Syllabus
Introduction
- Reinforcement learning in a nutshell
- Terms in reinforcement learning
- A basic RL problem
- Markov decision process
- A basic RL solution
- Monte Carlo method
- Temporal difference methods
- Other RL algorithms
- The setting
- Exploration and exploitation
- Monte Carlo prediction
- First visit and every visit MC prediction
- Monte Carlo control
- Additional modifications
- The setting
- SARSA
- SARSAMAX (Q-learning)
- Expected SARSA
- Deep reinforcement learning
- Multi-agent reinforcement learning
- Inverse reinforcement learning
- Your reinforcement learning journey
Taught by
Khaulat Abdulhakeem
Related Courses
6.S094: Deep Learning for Self-Driving CarsMassachusetts Institute of Technology via Independent Natural Language Processing (NLP)
Microsoft via edX Deep Reinforcement Learning
Nvidia Deep Learning Institute via Udacity Advanced AI: Deep Reinforcement Learning in Python
Udemy Self-driving go-kart with Unity-ML
Udemy