Reinforcement Learning Foundations
Offered By: LinkedIn Learning
Course Description
Overview
Learn the basics of reinforcement learning (RL), including the terminology, the kinds of problems you can solve with RL, and the different methods for solving those problems.
Syllabus
Introduction
- Reinforcement learning in a nutshell
- Terms in reinforcement learning
- A basic RL problem
- Markov decision process
- A basic RL solution
- Monte Carlo method
- Temporal difference methods
- Other RL algorithms
- The setting
- Exploration and exploitation
- Monte Carlo prediction
- First visit and every visit MC prediction
- Monte Carlo control
- Additional modifications
- The setting
- SARSA
- SARSAMAX (Q-learning)
- Expected SARSA
- Deep reinforcement learning
- Multi-agent reinforcement learning
- Inverse reinforcement learning
- Your reinforcement learning journey
Taught by
Khaulat Abdulhakeem
Related Courses
Deep Learning and Python Programming for AI with Microsoft AzureCloudswyft via FutureLearn Advanced Artificial Intelligence on Microsoft Azure: Deep Learning, Reinforcement Learning and Applied AI
Cloudswyft via FutureLearn Overview of Advanced Methods of Reinforcement Learning in Finance
New York University (NYU) via Coursera AI for Cybersecurity
Johns Hopkins University via Coursera 人工智慧:機器學習與理論基礎 (Artificial Intelligence - Learning & Theory)
National Taiwan University via Coursera