R Essential Training Part 2: Modeling Data
Offered By: LinkedIn Learning
Course Description
Overview
Learn how to model data in R, one of the most important tools available for data analysis, machine learning, and data science.
Syllabus
Introduction
- Model data with R
- Using the exercise files
- Data science with R: A case study
- Computing frequencies
- Computing descriptive statistics
- Computing correlations
- Creating contingency tables
- Conducting a principal component analysis
- Conducting an item analysis
- Conducting a confirmatory factor analysis
- Comparing proportions
- Comparing one mean to a population: One-sample t-test
- Comparing paired means: Paired samples t-test
- Comparing two means: Independent samples t-test
- Comparing multiple means: One-factor analysis of variance
- Comparing means with multiple categorical predictors: Factorial analysis of variance
- Predicting outcomes with linear regression
- Predicting outcomes with lasso regression
- Predicting outcomes with quantile regression
- Predicting outcomes with logistic regression
- Predicting outcomes with Poisson or log-linear regression
- Assessing predictions with blocked-entry models
- Grouping cases with hierarchical clustering
- Grouping cases with k-means clustering
- Classifying cases with k-nearest neighbors
- Classifying cases with decision tree analysis
- Creating ensemble models with random forest classification
- Next steps
Taught by
Barton Poulson
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX