Mistakes to Avoid in Machine Learning
Offered By: LinkedIn Learning
Course Description
Overview
Learn about the common mistakes you should avoid when building your machine learning models.
Syllabus
Introduction
- Avoiding machine learning mistakes
- Using the exercise files
- Assuming data is good to go
- Neglecting to consult subject matter experts
- Overfitting your models
- Not standardizing your data
- Focusing on the wrong factors
- Data leakage
- Forgetting traditional statistics tools
- Assuming deployment is a breeze
- Assuming machine learning is the answer
- Developing in a silo
- Not treating for imbalanced sampling
- Interpreting your coefficients without properly treating for multicollinearity
- Evaluating by accuracy alone
- Giving overly technical presentations
- Take your machine learning skills to the next level
Taught by
Brett Vanderblock and Madecraft
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent