Mistakes to Avoid in Machine Learning
Offered By: LinkedIn Learning
Course Description
Overview
Learn about the common mistakes you should avoid when building your machine learning models.
Syllabus
Introduction
- Avoiding machine learning mistakes
- Using the exercise files
- Assuming data is good to go
- Neglecting to consult subject matter experts
- Overfitting your models
- Not standardizing your data
- Focusing on the wrong factors
- Data leakage
- Forgetting traditional statistics tools
- Assuming deployment is a breeze
- Assuming machine learning is the answer
- Developing in a silo
- Not treating for imbalanced sampling
- Interpreting your coefficients without properly treating for multicollinearity
- Evaluating by accuracy alone
- Giving overly technical presentations
- Take your machine learning skills to the next level
Taught by
Brett Vanderblock and Madecraft
Related Courses
Macroeconometric ForecastingInternational Monetary Fund via edX Machine Learning With Big Data
University of California, San Diego via Coursera Data Science at Scale - Capstone Project
University of Washington via Coursera Structural Equation Model and its Applications | 结构方程模型及其应用 (粤语)
The Chinese University of Hong Kong via Coursera Data Science in Action - Building a Predictive Churn Model
SAP Learning