YoVDO

Machine Learning Foundations: Linear Algebra

Offered By: LinkedIn Learning

Tags

Machine Learning Courses Linear Algebra Courses Vectors Courses Matrices Courses Gaussian Elimination Courses Eigenvalues Courses Eigenvectors Courses Gram-Schmidt Process Courses Orthogonality Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the fundamentals of linear algebra, the mathematical foundation of machine learning algorithms.

Syllabus

Introduction
  • Introduction
  • What you should know
1. Introduction to Linear Algebra
  • Defining linear algebra
  • Applications of linear algebra in ML
2. Vectors Basics
  • Introduction to vectors
  • Vector arithmetic
  • Coordinate system
3. Vector Projections and Basis
  • Dot product of vectors
  • Scalar and vector projection
  • Changing basis of vectors
  • Basis, linear independence, and span
4. Introduction to Matrices
  • Matrices introduction
  • Types of matrices
  • Types of matrix transformation
  • Composition or combination of matrix transformations
5. Gaussian Elimination
  • Solving linear equations using Gaussian elimination
  • Gaussian elimination and finding the inverse matrix
  • Inverse and determinant
6. Matrices from Orthogonality to Gram–Schmidt Process
  • Matrices changing basis
  • Transforming to the new basis
  • Orthogonal matrix
  • Gram–Schmidt process
7. Eigenvalues and Eigenvectors
  • Introduction to eigenvalues and eigenvectors
  • Calculating eigenvalues and eigenvectors
  • Changing to the eigenbasis
  • Google PageRank algorithm
Conclusion
  • Next steps

Taught by

Terezija Semenski

Related Courses

Algèbre Linéaire (Partie 2)
École Polytechnique Fédérale de Lausanne via edX
Algèbre Linéaire (Partie 3)
École Polytechnique Fédérale de Lausanne via edX
Mécanique Lagrangienne
École Polytechnique Fédérale de Lausanne via Coursera
Linear Algebra
Indian Institute of Science Bangalore via Swayam
Differential Equations: 2x2 Systems
Massachusetts Institute of Technology via edX