YoVDO

Hands-On AI: RAG using LlamaIndex

Offered By: LinkedIn Learning

Tags

Prompt Engineering Courses Vector Databases Courses Embeddings Courses Retrieval Augmented Generation (RAG) Courses Qdrant Courses Retrieval Augmented Generation Courses LlamaIndex Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to enhance AI query capabilities and data accuracy through the application of LlamaIndex in retrieval-augmented generation processes.

Syllabus

Introduction
  • Overcome the limitations of LLMs with RAG
  • Limitations of LLMs
  • Use cases for retrieval-augmented generation (RAG)
1. Getting Started
  • Using GitHub Codespaces
  • Setting up your environment
  • Choosing an LLM and embeddings provider
  • Setting up LLM accounts
  • Choosing a vector database
  • Setting up a Qdrant account
  • Downloading our data
2. Fundamental Concepts in LlamaIndex
  • How LlamaIndex is organized
  • Using LLMs
  • Loading data
  • Indexing
  • Storing and retrieving
  • Querying
  • Agents
3. Introduction to RAG
  • Components of a RAG system
  • Ingestion pipeline
  • Query pipeline
  • Prompt engineering for RAG
  • Data preparation for RAG
  • Putting it all together
  • Drawbacks of Naive RAG
4. RAG Evaluation
  • Introduction to RAG evaluation
  • Evaluation metrics
  • How to create an evaluation set
5. Advanced RAG: Pre-Retrieval and Indexing Techniques
  • How we can improve on Naive RAG
  • Optimizing chunk size
  • Small to big retrieval
  • Semantic chunking
  • Metadata extraction
  • Document summary index
  • Query transformation
6. Advanced RAG: Post-Retrieval and Other Techniques
  • Node post-processing
  • Re-ranking
  • FLARE
  • Prompt compression
  • Self-correcting
7. Modular RAG
  • Hybrid retrieval
  • Agentic RAG
  • Ensemble retrieval
  • Ensemble query engine
Conclusion
  • LlamaIndex evaluation
  • Comparative analysis of retrieval-augmented generation techniques

Taught by

Harpreet Sahota

Related Courses

Building a Queryable Journal with OpenAI, Markdown, and LlamaIndex
Samuel Chan via YouTube
Building an AI Language Tutor with Pinecone, LlamaIndex, GPT-3, and BeautifulSoup
Samuel Chan via YouTube
Locally-Hosted Offline LLM with LlamaIndex and OPT - Implementing Open-Source Instruction-Tuned Language Models
Samuel Chan via YouTube
Understanding Embeddings in Large Language Models - LlamaIndex and Chroma DB
Samuel Chan via YouTube
A Deep Dive Into Retrieval-Augmented Generation with LlamaIndex
Linux Foundation via YouTube