Hands-On AI: RAG using LlamaIndex
Offered By: LinkedIn Learning
Course Description
Overview
Learn how to enhance AI query capabilities and data accuracy through the application of LlamaIndex in retrieval-augmented generation processes.
Syllabus
Introduction
- Overcome the limitations of LLMs with RAG
- Limitations of LLMs
- Use cases for retrieval-augmented generation (RAG)
- Using GitHub Codespaces
- Setting up your environment
- Choosing an LLM and embeddings provider
- Setting up LLM accounts
- Choosing a vector database
- Setting up a Qdrant account
- Downloading our data
- How LlamaIndex is organized
- Using LLMs
- Loading data
- Indexing
- Storing and retrieving
- Querying
- Agents
- Components of a RAG system
- Ingestion pipeline
- Query pipeline
- Prompt engineering for RAG
- Data preparation for RAG
- Putting it all together
- Drawbacks of Naive RAG
- Introduction to RAG evaluation
- Evaluation metrics
- How to create an evaluation set
- How we can improve on Naive RAG
- Optimizing chunk size
- Small to big retrieval
- Semantic chunking
- Metadata extraction
- Document summary index
- Query transformation
- Node post-processing
- Re-ranking
- FLARE
- Prompt compression
- Self-correcting
- Hybrid retrieval
- Agentic RAG
- Ensemble retrieval
- Ensemble query engine
- LlamaIndex evaluation
- Comparative analysis of retrieval-augmented generation techniques
Taught by
Harpreet Sahota
Related Courses
TensorFlow on Google CloudGoogle Cloud via Coursera Art and Science of Machine Learning 日本語版
Google Cloud via Coursera Art and Science of Machine Learning auf Deutsch
Google Cloud via Coursera Art and Science of Machine Learning em Português Brasileiro
Google Cloud via Coursera Art and Science of Machine Learning en Español
Google Cloud via Coursera