YoVDO

Foundations of Responsible AI

Offered By: LinkedIn Learning

Tags

Responsible AI Courses Data Visualization Courses Algorithmic Bias Courses Data Literacy Courses AI Regulation Courses

Course Description

Overview

Learn about the practices needed to perform fairness testing and implement responsible AI systems.

Syllabus

Introduction
  • Understanding responsible AI
1. Philosophy of AI
  • What is AI and how does data enable it?
  • Modern AI development
  • Problems in ML that differ from software engineering
2. Data Awareness and Literacy
  • Big data and where it comes from
  • Seeing trends in data
  • Building data understanding
  • Visualization and comparing data
  • Storytelling with data
3. Ethical Theories
  • Introduction to ethical AI
  • Ethical frameworks
  • Beneficence vs. maleficence
  • Calculating consequences
  • Consequence scanning
  • Common good and equity
4. Responsible AI Principles
  • Fairness
  • Transparency
  • Accountability
  • Explanations
  • Interpretability
  • Inclusivity
5. Algorithmic Harm
  • Why fairness related harms?
  • Critical AI incidents and learnings
  • Bias in the design and development lifecycle
  • Causal reasoning and fairness
  • Risk mitigation in AI
  • Technical aspects of sociotechnical solutions
6. Human Rights and AI
  • Anonymity and data privacy
  • Unintended uses and misuses
  • Unethical business cases
  • Autonomous systems and society
  • Who AI is developed for?
Conclusion
  • AI regulation and applying responsible AI frameworks

Taught by

Ayodele Odubela

Related Courses

The Laws of Digital Data, Content and Artificial Intelligence (AI)
University of Law via FutureLearn
Ethical AI
Udacity
Navigating the AI Council's AI Roadmap
Alan Turing Institute via YouTube
An Unethical Optimisation Principle
Alan Turing Institute via YouTube
ChatGPT Teach-Out
University of Michigan via Coursera