YoVDO

Foundations of Responsible AI

Offered By: LinkedIn Learning

Tags

Responsible AI Courses Data Visualization Courses Algorithmic Bias Courses Data Literacy Courses AI Regulation Courses

Course Description

Overview

Learn about the practices needed to perform fairness testing and implement responsible AI systems.

Syllabus

Introduction
  • Understanding responsible AI
1. Philosophy of AI
  • What is AI and how does data enable it?
  • Modern AI development
  • Problems in ML that differ from software engineering
2. Data Awareness and Literacy
  • Big data and where it comes from
  • Seeing trends in data
  • Building data understanding
  • Visualization and comparing data
  • Storytelling with data
3. Ethical Theories
  • Introduction to ethical AI
  • Ethical frameworks
  • Beneficence vs. maleficence
  • Calculating consequences
  • Consequence scanning
  • Common good and equity
4. Responsible AI Principles
  • Fairness
  • Transparency
  • Accountability
  • Explanations
  • Interpretability
  • Inclusivity
5. Algorithmic Harm
  • Why fairness related harms?
  • Critical AI incidents and learnings
  • Bias in the design and development lifecycle
  • Causal reasoning and fairness
  • Risk mitigation in AI
  • Technical aspects of sociotechnical solutions
6. Human Rights and AI
  • Anonymity and data privacy
  • Unintended uses and misuses
  • Unethical business cases
  • Autonomous systems and society
  • Who AI is developed for?
Conclusion
  • AI regulation and applying responsible AI frameworks

Taught by

Ayodele Odubela

Related Courses

Data Science Ethics
University of Michigan via edX
Advanced Generative Art and Computational Creativity
Simon Fraser University via Kadenze
AI for Legal Professionals (I): Law and Policy
National Chiao Tung University via FutureLearn
Ethical Issues in Data Science
University of Colorado Boulder via Coursera
Artificial Intelligence by CrashCourse
CrashCourse via YouTube