DevOps for Data Scientists
Offered By: LinkedIn Learning
Course Description
Overview
Learn the principles of supporting DevOps and how to apply them to data science.
Syllabus
Introduction
- Welcome
- Target audience
- Data science and software engineering
- Collecting and munging data
- Experimenting with data, features, and algorithms
- Testing and validating models
- Version control for data science models
- Predictive Model Markup Language
- Deploying models with automation tools
- Deploying to staging environment
- Canary deployments
- Securing the data science models in production
- Monitoring models in production
- Introduction to Docker
- Creating a Dockerfile for data science models
- Data science Docker image repository
- Overview of DevOps best practices for data science
Taught by
Dan Sullivan
Related Courses
Cloud Computing Applications, Part 1: Cloud Systems and InfrastructureUniversity of Illinois at Urbana-Champaign via Coursera Introduction to Cloud Infrastructure Technologies
Linux Foundation via edX Introduction aux conteneurs
Microsoft Virtual Academy via OpenClassrooms The Docker for DevOps course: From development to production
Udemy Windows Server 2016: Virtualization
Microsoft via edX