YoVDO

Data Wrangling in R

Offered By: LinkedIn Learning

Tags

Data Wrangling Courses R Programming Courses Data Cleaning Courses Data Transformation Courses Tidy Data Courses

Course Description

Overview

Learn about the principles of tidy data and discover how to import, transform, clean, and wrangle data using the R programming language.

Syllabus

Introduction
  • Preparing for data wrangling
  • What you need to know
  • Exercise files
1. Tidy Data
  • What is tidy data?
  • Variables, observations, and values
  • Common data problems
  • Using the tidyverse
2. Working with Tibbles
  • Building and printing tibbles
  • Subsetting tibbles
  • Filtering tibbles
3. Importing Data into R
  • What are CSV files?
  • Importing CSV files into R
  • What are TSV files?
  • Importing TSV files into R
  • Importing delimited files into R
  • Importing fixed-width files into R
  • Importing Excel files into R
  • Reading data from databases and the web
4. Data Transformation
  • Wide vs. long datasets
  • Making wide datasets long with pivot_longer()
  • Making long datasets wide with pivot_wider()
  • Converting data types in R
  • Working with dates and times in R
5. Data Cleaning
  • Detecting outliers
  • Missing and special values in R
  • Breaking apart columns with separate()
  • Combining columns with unite()
  • Manipulating strings in R with stringr
6. Data Wrangling Case Study: Coal Consumption
  • Understanding the coal dataset
  • Reading in the coal dataset
  • Converting the coal dataset from wide to long
  • Segmenting the coal dataset
  • Visualizing the coal dataset
7. Data Wrangling Case Study: Water Quality
  • Understanding the water quality dataset
  • Reading in the water quality dataset
  • Filtering the water quality dataset
  • Water quality data types
  • Correcting data entry errors
  • Identifying and removing outliers
  • Converting temperature from Fahrenheit to Celsius
  • Widening the water quality dataset
8. Data Wrangling Case Study: Social Security Disability
  • Understanding the social security disability dataset
  • Importing the social security disability dataset
  • Making the social security disability dataset long
  • Formatting dates in the social security disability dataset
  • Fiscal years in the social security disability dataset
  • Widening the social security disability dataset
  • Visualizing the social security disability dataset
Conclusion
  • Next steps

Taught by

Mike Chapple

Related Courses

Interprofessional Healthcare Informatics
University of Minnesota via Coursera
Data Science at Scale - Capstone Project
University of Washington via Coursera
Implementing ETL with SQL Server Integration Services
Microsoft via edX
Introduzione a R
University of Modena and Reggio Emilia via EduOpen
Практики работы с данными средствами Power Query и Power Pivot
Saint Petersburg State University via Coursera