Data Science Foundations: Data Mining
Offered By: LinkedIn Learning
Course Description
Overview
Learn the key concepts and skills behind one of the most important elements of data science: data mining.
Syllabus
Introduction
- Python for data mining
- What you should know
- Exercise files
- Tools for data mining
- The CRISP-DM data mining model
- Privacy, copyright, and bias
- Validating results
- Dimensionality reduction overview
- Handwritten digits dataset
- PCA
- LDA
- t-SNE
- Challenge: PCA
- Solution: PCA
- Clustering overview
- Penguin dataset
- Hierarchical clustering
- K-means
- DBSCAN
- Challenge: K-means
- Solution: K-means
- Classification overview
- Spambase dataset
- KNN
- Naive Bayes
- Decision trees
- Challenge: KNN
- Solution: KNN
- Association analysis overview
- Groceries dataset
- Apriori
- Eclat
- FP-Growth
- Challenge: Apriori
- Solution: Apriori
- Time-series mining
- Air Passengers dataset
- Time-Series decomposition
- ARIMA
- MLP
- Challenge: Decomposition
- Solution: Decomposition
- Text mining overview
- Iliad dataset
- Sentiment analysis: Binary classification
- Sentiment analysis: Sentiment scoring
- Word pairs
- Challenge: Sentiment scoring
- Solution: Sentiment scoring
- Next steps
Taught by
Barton Poulson
Related Courses
Продвинутые методы машинного обученияHigher School of Economics via Coursera Natural Language Processing with Classification and Vector Spaces
DeepLearning.AI via Coursera Data Modeling and Regression Analysis in Business
University of Illinois at Urbana-Champaign via Coursera Advanced Dimensionality Reduction in R
DataCamp Dimensionality Reduction in Python
DataCamp