Data Science Foundations: Data Mining
Offered By: LinkedIn Learning
Course Description
Overview
Learn the key concepts and skills behind one of the most important elements of data science: data mining.
Syllabus
Introduction
- Python for data mining
- What you should know
- Exercise files
- Tools for data mining
- The CRISP-DM data mining model
- Privacy, copyright, and bias
- Validating results
- Dimensionality reduction overview
- Handwritten digits dataset
- PCA
- LDA
- t-SNE
- Challenge: PCA
- Solution: PCA
- Clustering overview
- Penguin dataset
- Hierarchical clustering
- K-means
- DBSCAN
- Challenge: K-means
- Solution: K-means
- Classification overview
- Spambase dataset
- KNN
- Naive Bayes
- Decision trees
- Challenge: KNN
- Solution: KNN
- Association analysis overview
- Groceries dataset
- Apriori
- Eclat
- FP-Growth
- Challenge: Apriori
- Solution: Apriori
- Time-series mining
- Air Passengers dataset
- Time-Series decomposition
- ARIMA
- MLP
- Challenge: Decomposition
- Solution: Decomposition
- Text mining overview
- Iliad dataset
- Sentiment analysis: Binary classification
- Sentiment analysis: Sentiment scoring
- Word pairs
- Challenge: Sentiment scoring
- Solution: Sentiment scoring
- Next steps
Taught by
Barton Poulson
Related Courses
Customer Segmentation Using ClusteringGreat Learning via YouTube Practical Clustering and Topological Data Analysis
Applied Algebraic Topology Network via YouTube Approaches to Fraud Detection - Autoencoder and Isolation Forest - Fraud Detection Using ML
Data Science Dojo via YouTube Advanced Methods in Machine Learning Applications
Johns Hopkins University via Coursera Unveiling Clustering in BERTopic Topic Modeling
Conf42 via YouTube