Data Science Foundations: Data Mining
Offered By: LinkedIn Learning
Course Description
Overview
Learn the key concepts and skills behind one of the most important elements of data science: data mining.
Syllabus
Introduction
- Python for data mining
- What you should know
- Exercise files
- Tools for data mining
- The CRISP-DM data mining model
- Privacy, copyright, and bias
- Validating results
- Dimensionality reduction overview
- Handwritten digits dataset
- PCA
- LDA
- t-SNE
- Challenge: PCA
- Solution: PCA
- Clustering overview
- Penguin dataset
- Hierarchical clustering
- K-means
- DBSCAN
- Challenge: K-means
- Solution: K-means
- Classification overview
- Spambase dataset
- KNN
- Naive Bayes
- Decision trees
- Challenge: KNN
- Solution: KNN
- Association analysis overview
- Groceries dataset
- Apriori
- Eclat
- FP-Growth
- Challenge: Apriori
- Solution: Apriori
- Time-series mining
- Air Passengers dataset
- Time-Series decomposition
- ARIMA
- MLP
- Challenge: Decomposition
- Solution: Decomposition
- Text mining overview
- Iliad dataset
- Sentiment analysis: Binary classification
- Sentiment analysis: Sentiment scoring
- Word pairs
- Challenge: Sentiment scoring
- Solution: Sentiment scoring
- Next steps
Taught by
Barton Poulson
Related Courses
Graph Partitioning and ExpandersStanford University via NovoEd The Analytics Edge
Massachusetts Institute of Technology via edX More Data Mining with Weka
University of Waikato via Independent Mining Massive Datasets
Stanford University via edX The Caltech-JPL Summer School on Big Data Analytics
California Institute of Technology via Coursera