YoVDO

Data Science for Java Developers

Offered By: LinkedIn Learning

Tags

Data Science Courses Data Visualization Courses Machine Learning Courses Java Courses JavaFX Courses Data Manipulation Courses Naive Bayes Courses CRISP-DM Courses K-Nearest Neighbors Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Learn how to turn data into information, using one of the world's most popular programming languages.

Syllabus

Introduction
  • Data science: Making sense out of chaos
1. Data Science Basics
  • What is data science anyway?
  • Data science examples
  • Data as a business asset
  • CRISP-DM: The data science cycle
  • Types of problems in data science
2. Representing Data in Java
  • Data formatting in Java
  • More data formatting
  • Real-life data difficulties
3. Data Manipulation Techniques
  • Mapping
  • Filtering
  • Collecting
  • Sorting
  • Challenge: Combining data operations
  • Solution: Combining data operations
4. Loading Data in Java
  • Reducing file size
  • Loading data from text files
  • Creating a person data class
  • Converting strings to data objects
  • Loading tab-separated files
  • Loading CSVs
  • Converting CSVs to data objects
  • Challenge: Manipulating data
  • Solution: Manipulating data
5. Data Visualization with JavaFX
  • Setting up JavaFX
  • Formatting data for a scatterplot
  • Displaying a scatterplot
  • Multiple datasets on a scatterplot
  • Calculating average MPG
  • Displaying a bar chart
  • Challenge: Displaying data on a bar chart
  • Solution: Displaying data on a bar chart
6. Modeling and Machine Learning
  • Building machine learning models
  • Supervised vs. unsupervised learning
  • Overfitting and how to avoid it
7. K-Nearest Neighbors (KNN)
  • K-nearest neighbor basics
  • Loading flower data
  • Creating a DataItem interface
  • Calculating the closest data points
  • Implementing the DataItem interface
  • Letting your data points vote
  • Finishing your KNN classifier
8. Naive Bayes
  • Naive Bayes basics
  • Calculating the possible labels
  • Splitting your dataset by label
  • Calculating mean and standard deviation
  • Calculating datapoint probabilities

Taught by

Shaun Wassell

Related Courses

Algorithms, Part I
Princeton University via Coursera
Introduction à la programmation orientée objet (en Java)
École Polytechnique Fédérale de Lausanne via Coursera
MongoDB for Java Developers
MongoDB University
Initiation à la programmation (en Java)
École Polytechnique Fédérale de Lausanne via Coursera
Intro to Java Programming
San Jose State University via Udacity