Data Cleaning in Python Essential Training
Offered By: LinkedIn Learning
Course Description
Overview
Improve the overall analytic workflow of your organization by boosting your data cleaning skills in Python.
Syllabus
Introduction
- Why is clean data important?
- What you should know
- Using GitHub Codespaces with this course
- Types of errors
- Missing values
- Bad values
- Duplicates
- Human errors
- Machine errors
- Design errors
- Challenge: UI design
- Solution: UI design
- Schemas
- Validation
- Finding missing data
- Domain knowledge
- Subgroups
- Challenge: Find bad data
- Solution: Find bad data
- Serialization formats
- Digital signature
- Data pipelines and automation
- Transactions
- Data organization and tidy data
- Process and data quality metrics
- Challenge: ETL
- Solution: ETL
- Renaming fields
- Fixing types
- Joining and splitting data
- Deleting bad data
- Filling missing values
- Reshaping data
- Challenge: Workshop earnings
- Solution: Workshop earnings
- Next steps
Taught by
Miki Tebeka
Related Courses
Data Wrangling with MongoDBMongoDB via Udacity Getting and Cleaning Data
Johns Hopkins University via Coursera 软件包在流行病学研究中的应用 Using software apps in epidemiological research
Peking University via Coursera Creating an Analytical Dataset
Udacity Implementing ETL with SQL Server Integration Services
Microsoft via edX