YoVDO

Data Cleaning in Python Essential Training

Offered By: LinkedIn Learning

Tags

Data Cleaning Courses Python Courses Data Manipulation Courses Data Organization Courses Data Validation Courses

Course Description

Overview

Improve the overall analytic workflow of your organization by boosting your data cleaning skills in Python.

Syllabus

Introduction
  • Why is clean data important?
  • What you should know
  • Using GitHub Codespaces with this course
1. Bad Data
  • Types of errors
  • Missing values
  • Bad values
  • Duplicates
2. Causes of Errors
  • Human errors
  • Machine errors
  • Design errors
  • Challenge: UI design
  • Solution: UI design
3. Detecting Errors
  • Schemas
  • Validation
  • Finding missing data
  • Domain knowledge
  • Subgroups
  • Challenge: Find bad data
  • Solution: Find bad data
4. Preventing Errors
  • Serialization formats
  • Digital signature
  • Data pipelines and automation
  • Transactions
  • Data organization and tidy data
  • Process and data quality metrics
  • Challenge: ETL
  • Solution: ETL
5. Fixing Errors
  • Renaming fields
  • Fixing types
  • Joining and splitting data
  • Deleting bad data
  • Filling missing values
  • Reshaping data
  • Challenge: Workshop earnings
  • Solution: Workshop earnings
Conclusion
  • Next steps

Taught by

Miki Tebeka

Related Courses

Data Wrangling with MongoDB
MongoDB via Udacity
Getting and Cleaning Data
Johns Hopkins University via Coursera
软件包在流行病学研究中的应用 Using software apps in epidemiological research
Peking University via Coursera
Creating an Analytical Dataset
Udacity
Implementing ETL with SQL Server Integration Services
Microsoft via edX