YoVDO

Business Analytics: Data Reduction Techniques Using Excel and R

Offered By: LinkedIn Learning

Tags

Dimensionality Reduction Courses Data Visualization Courses Machine Learning Courses Clustering Courses Principal Component Analysis Courses K-Means Clustering Courses

Course Description

Overview

Explore data reduction techniques from machine learning and how to integrate your methods in Excel, R, and Power BI.

Syllabus

Introduction
  • Use data reduction for valuable insights
  • What you should know
  • Introducing the course project
  • Configuring Excel Solver Add-in
  • Working with R
  • Configuring R in Power BI
1. Working with Large Datasets
  • AI and machine learning
  • Numerosity
  • Dimensionality
  • Aggregating or grouping data
  • Histograms
  • Binning
  • Correlation and covariance
  • Challenge: Getting the data
  • Solution: Getting the data
2. Clustering
  • Calculating distances
  • Hierarchical clustering
  • Heatmaps and dendrograms
  • K-means clustering in one dimension
  • K-means clustering in two dimensions
  • Determining k
  • Challenge: Clustering
  • Solution: Clustering
3. PCA
  • Visualizing PCA
  • Using Excel Solver to find solutions
  • Solving for principal components axes
  • Eigenvalues
  • Eigenvectors
  • PCA projection space
  • Scree plot
  • Challenge: PCA
  • Solution: PCA
4. Selecting Dimensions
  • Analyzing potential model dimensions
  • Removing or replacing null values
5. Power BI and R
  • Setting up R in Power Query Editor
  • Creating custom code with R standard visual
  • Challenge: Power BI
  • Solution: Power BI
Conclusion
  • Next steps

Taught by

Conrad Carlberg

Related Courses

Analyse des données multidimensionnelles
Agrocampus Quest via France Université Numerique
Applied Multivariate Statistical Modeling
Indian Institute of Technology, Kharagpur via Swayam
Поиск структуры в данных
Moscow Institute of Physics and Technology via Coursera
Exploratory Multivariate Data Analysis
Agrocampus Ouest via France Université Numerique
Data Science: Machine Learning
Harvard University via edX