Applied Machine Learning: Foundations
Offered By: LinkedIn Learning
Course Description
Overview
Develop foundational skills and technical know-how for dealing with real-world problems using the Python ecosystem.
Syllabus
Introduction
- Mastering machine learning essentials
- What you should know
- Overview of types of machine learning
- Applications of ML
- Tools for ML
- Using GitHub Codespaces with this course
- Exploring the dataset
- Data preprocessing
- Scikit-learn pipelines
- Challenge: EDA plot
- Solution: EDA plot
- Dummy model
- Linear regression
- Decision trees
- CatBoost
- Challenge: Random forest pipeline
- Solution: Random forest pipeline
- R2
- Root mean squared
- Residual plot
- Challenge: Evaluate random forest
- Solution: Evaluate random forest
- Hyperparameters and linear regression
- Tuning decision trees
- Tuning CatBoost
- Grid search
- Challenge: Tuning random forest
- Solution: Tuning random forest
- End-to-end notebook
- Using MLFlow
- Challenge: MLFlow with random forest
- Solution: MLFlow with random forest
- Next steps
Taught by
Derek Jedamski
Related Courses
Practical Machine LearningJohns Hopkins University via Coursera Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Practical Machine Learning on H2O
H2O.ai via Coursera Modélisez vos données avec les méthodes ensemblistes
CentraleSupélec via OpenClassrooms Introduction to Machine Learning for Coders!
fast.ai via Independent