YoVDO

Applied Machine Learning: Foundations

Offered By: LinkedIn Learning

Tags

Machine Learning Courses Python Courses Linear Regression Courses scikit-learn Courses Decision Trees Courses Exploratory Data Analysis Courses Random Forests Courses Model Evaluation Courses Hyperparameter Tuning Courses

Course Description

Overview

Develop foundational skills and technical know-how for dealing with real-world problems using the Python ecosystem.

Syllabus

Introduction
  • Mastering machine learning essentials
  • What you should know
1. Introduction to Machine Learning
  • Overview of types of machine learning
  • Applications of ML
  • Tools for ML
  • Using GitHub Codespaces with this course
2. EDA
  • Exploring the dataset
  • Data preprocessing
  • Scikit-learn pipelines
  • Challenge: EDA plot
  • Solution: EDA plot
3. Model Creation
  • Dummy model
  • Linear regression
  • Decision trees
  • CatBoost
  • Challenge: Random forest pipeline
  • Solution: Random forest pipeline
4. Model Evaluation
  • R2
  • Root mean squared
  • Residual plot
  • Challenge: Evaluate random forest
  • Solution: Evaluate random forest
5. Model Tuning
  • Hyperparameters and linear regression
  • Tuning decision trees
  • Tuning CatBoost
  • Grid search
  • Challenge: Tuning random forest
  • Solution: Tuning random forest
6. Model Deployment
  • End-to-end notebook
  • Using MLFlow
  • Challenge: MLFlow with random forest
  • Solution: MLFlow with random forest
Conclusion
  • Next steps

Taught by

Derek Jedamski

Related Courses

Practical Machine Learning
Johns Hopkins University via Coursera
Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Practical Machine Learning on H2O
H2O.ai via Coursera
Modélisez vos données avec les méthodes ensemblistes
CentraleSupélec via OpenClassrooms
Introduction to Machine Learning for Coders!
fast.ai via Independent