Линейная алгебра (Linear Algebra)
Offered By: Higher School of Economics via Coursera
Course Description
Overview
Онлайн курс для дистанционного изучения линейной алгебры на нематематических факультетах.
Стандартный онлайн курс линейный алгебры, содержащий все необходимые для статистки и многомерного анализа приложения и алгоритмы, но не всегда содержащий подробные доказательства.
Мы введём понятие линейности и линейного пространства, конечномерного пространства, линейного функционала, линейного оператора. Научимся оперировать матрицами, находить удачные базисы для линейных операторов (диагонализировать матрицу, если это возможно, найти жорданов базис в случае пространств небольшой размерности). Мы обсудим теорему Перрона-Фробениуса и ее приложение к индексированию страниц в интернете. Мы будем изучать квадратичные формы и их приведение к главным осям.
Каждая лекция состоит из нескольких видеофрагментов, продолжительности примерно 10 минут, между ними короткие упражнения. К каждой лекции предполагается домашняя работа. Курс предполагает две контрольных работы – промежуточную и финальный экзамен. Мы предложим несколько дополнительных заданий для тех, кому стандартные задания курса покажутся простыми.
Появились технические трудности? Обращайтесь на адрес: [email protected]
Стандартный онлайн курс линейный алгебры, содержащий все необходимые для статистки и многомерного анализа приложения и алгоритмы, но не всегда содержащий подробные доказательства.
Мы введём понятие линейности и линейного пространства, конечномерного пространства, линейного функционала, линейного оператора. Научимся оперировать матрицами, находить удачные базисы для линейных операторов (диагонализировать матрицу, если это возможно, найти жорданов базис в случае пространств небольшой размерности). Мы обсудим теорему Перрона-Фробениуса и ее приложение к индексированию страниц в интернете. Мы будем изучать квадратичные формы и их приведение к главным осям.
Каждая лекция состоит из нескольких видеофрагментов, продолжительности примерно 10 минут, между ними короткие упражнения. К каждой лекции предполагается домашняя работа. Курс предполагает две контрольных работы – промежуточную и финальный экзамен. Мы предложим несколько дополнительных заданий для тех, кому стандартные задания курса покажутся простыми.
Появились технические трудности? Обращайтесь на адрес: [email protected]
Syllabus
- Понятие линейного пространства
- В этим модуле мы познакомимся с самыми базовыми понятиями - с теми, на которых строится весь дальнейший курс, которые объясняют, как выглядит множество объектов, изучаемых линейной алгеброй.
- Линейные функции на линейном пространстве
- На этой неделе мы поговорим о то, что есть линейные функции, об их выгодных сторонах, увидим, что вокруг нас очень многое живет по линейным законам.
- Базис линейного пространства
- В этом модуле попытаемся представить себе, что такое четырехмерное (и n-мерное) пространство, причём тут координаты, а так же введём понятие базиса линейного пространства и обсудим основные вопросы, связанные с ним; переходы от базиса к базису.
- Системы линейных уравнений
- Эти лекции дадут нам понять, как привычные нам системы линейных уравнений с многими неизвестными связаны с пространством, функциями в нем и разными фигурам, а так же обсудим разные методы решения таких систем.
- Факты о ядре и образе линейного отображения, преобразования координат
- Поговорим с вами о том, что такое отображение в линейном пространстве, а так же, какое значение в этой науке имеют слова "образ" и "ядро", и что можно понять про отображения, обладая информацией про эти объекты. (И наоборот).
- Операции над матрицами
- В этом модуле мы расскажем, почему матрица и линейное отображение - это почти одно и то же, какие в мире бывают матрицы и как с ними обращаться.
- Собственные вектора и значения линейного оператора
- На этой неделе вы узнаете, что такое собственный вектор, собственное значение, и кому они принадлежат. А ещё - почему они так полезны в нашей науке.
- Жорданова нормальная форма
- В конце этой недели вы будете знать, к какому общему виду можно привести абсолютно любую комплекснозначную матрицу, какие тайные знания нам даёт подобная форма,и почему так важно уметь матрицу к этому виду привести самостоятельно.
- Билинейные формы и операции с ними
- Мы расскажем вам, что такое билинейные формы и с чем их едят, где в окружающем мире увидеть билинейные формы, и как с ними можно работать.
- Квадратичные формы и процесс ортогонализации
- В этом модуле разговор пойдёт про квадратичные формы - ещё один вид преобразований, про то, почему они удобны, за какие изменения пространств отвечают, и как приводить их к самому красивому виду путём замены координат.
- Метод наименьших квадратов
- Метод наименьших квадратов - что это? Лектор подробно расскажет, что это за метод, в каких случаях удобно им пользоваться, и что в жизни есть множество ситуаций, в которых он даёт очень подходящие результаты.
Tags
Related Courses
Линейная алгебра: матрицы и отображенияNovosibirsk State University via Coursera Линейная алгебра: от идеи к формуле
Higher School of Economics via Coursera Jacobi modular forms: 30 ans après
Higher School of Economics via Coursera General Linear Models - Background Material
statisticsmatt via YouTube Number Theory
YouTube