The Official LangChain.js Course
Offered By: Scrimba
Course Description
Overview
Put yourself on the bleeding edge of AI by harnessing the power of LangChain Expression Language to build a chatbot that has deep knowledge of a provided document.
- Splitting with a LangChain textSplitter tool
- Vectorising text chunks
- Using embeddings models
- Supabase vector store
- Templates with input_variables
- Prompts from templates
- LangChain Expression Language
- Basic chains with the .Pipe() method
- Retrieval from a vector store
- Complex chains with RunnableSequence()
- The StringOutputParser() class
- Troubleshooting performance issues
Syllabus
- The Official LangChain.js Course
- 1. What you'll learn and build
- 2. Introduction to LangChain from Jacob Lee (Lead Maintainer of LangChain.js)
- 3. App Flow Diagrams
- 4. What are embeddings?
- 5. Supabase Setup
- 6. Split the text
- 7. Split the text II
- 8. Upload to supabase
- 9. Starter code
- 10. Explainer: The Standalone Question
- 11. Aside: Prompt Templates
- 12. Aside: Prompt Templates II
- 13. Adding the first chain
- 14. Retrieval
- 15. Add StringOutputParser
- 16. Fetching the answer: the template
- 17. Serialize the docs
- 18. Aside: RunnableSequence
- 19. Aside: RunnableSequence 2
- 20. Aside: RunnableSequence 3: RunnablePassthrough
- 21. Super Challenge - add the RunnableSequence
- 22. Super Challenge - solution
- 23. Wire up the UI
- 24. Setting up the memory
- 25. Super Challenge: Wire up the memory
- 26. Performance Issues Check-list
- 27. LangChain Outro
Related Courses
Prompt Templates for GPT-3.5 and Other LLMs - LangChainJames Briggs via YouTube Getting Started with GPT-3 vs. Open Source LLMs - LangChain
James Briggs via YouTube Chatbot Memory for Chat-GPT, Davinci + Other LLMs - LangChain
James Briggs via YouTube Chat in LangChain
James Briggs via YouTube LangChain Data Loaders, Tokenizers, Chunking, and Datasets - Data Prep
James Briggs via YouTube