YoVDO

Vehicle Dynamics III: Vertical oscillations

Offered By: Helmut Schmidt University via iversity

Tags

Mechanical Engineering Courses Vehicle Dynamics Courses

Course Description

Overview

In this third part of Vehicle Dynamics, we will illuminate the vertical dynamic aspects of vehicles. In short, we will describe the elements involved when a car drives on a bumpy or rough street.
We will start with a survey of suspensions and springs and dampers. After this, we will explain the description of rough streets and give an introduction to Fourier integrals. Next, we will take a closer look at vertical models. In the last fundamental part of the course, we will describe the conflict between driving safety and comfort. The course will be finished with two applications from automotive mechatronics.

What will I learn?

At the end of the course you will …

  • know different kinds of suspensions, springs and dampers.
  • know the description of rough and bumpy streets
  • understand the Fourier integral
  • understand the conflict between driving safety and comfort
  • be able to calculate simple properties of a car
What do I have to know?

Some basic understanding of the following subjects will help you successfully participate in this course: Algebra; Trigonometric Functions; Differential Calculus; Linear Algebra; Vectors; Coordinate Systems; Force, Torque, Equilibrium; Mass, Center of Gravity, Moment of Inertia; Method of Sections, Friction, Newton's Law, (Lagrange's Equation)


Taught by

Martin Meywerk

Tags

Related Courses

Vehicle Dynamics I: Accelerating and Braking
Helmut Schmidt University via iversity
Vehicle Dynamics II: Cornering
Helmut Schmidt University via iversity
Creating a Car Crash in Maya
Pluralsight
Electric Vehicles - Part 1
Indian Institute of Technology Delhi via Swayam
EV - Vehicle Dynamics and Electric Motor Drives
Indian Institute of Technology Delhi via Swayam