Sparse Representations in Signal and Image Processing
Offered By: Technion - Israel Institute of Technology via edX
Course Description
Overview
Syllabus
Course 1: Sparse Representations in Signal and Image Processing: Fundamentals
Learn about the field of sparse representations by understanding its fundamental theoretical and algorithmic foundations.
Course 2: Sparse Representations in Image Processing: From Theory to Practice
Learn about the deployment of the sparse representation model to signal and image processing.
Courses
-
This course introduces the fundamentals of the field of sparse representations, starting with its theoretical concepts, and systematically presenting its key achievements. We will touch on theory and numerical algorithms.
Modeling data is the way we - scientists - believe that information should be explained and handled. Indeed, models play a central role in practically every task in signal and image processing. Sparse representation theory puts forward an emerging, highly effective, and universal such model. Its core idea is the description of the data as a linear combination of few building blocks - atoms - taken from a pre-defined dictionary of such fundamental elements.
A series of theoretical problems arise in deploying this seemingly simple model to data sources, leading to fascinating new results in linear algebra, approximation theory, optimization, and machine learning. In this course you will learn of these achievements, which serve as the foundations for a revolution that took place in signal and image processing in recent years.
-
This course is a follow-up to the first introductory course of sparse representations. Whereas the first course puts emphasis on the theory and algorithms in this field, this course shows how these apply to actual signal and image processing needs.
Models play a central role in practically every task in signal and image processing. Sparse representation theory puts forward an emerging, highly effective, and universal such model. Its core idea is the description of the data as a linear combination of few building blocks - atoms - taken from a pre-defined dictionary of such fundamental elements.
In this course, you will learn how to use sparse representations in series of image processing tasks. We will cover applications such as denoising, deblurring, inpainting, image separation, compression, super-resolution, and more. A key feature in migrating from the theoretical model to its practical deployment is the adaptation of the dictionary to the signal. This topic, known as "dictionary learning" will be presented, along with ways to use the trained dictionaries in the above mentioned applications.
Taught by
Yaniv Romano, Alona Golts and Michael Elad
Tags
Related Courses
AWS Certified Machine Learning - Specialty (LA)A Cloud Guru Blockchain Essentials
A Cloud Guru Algorithms for DNA Sequencing
Johns Hopkins University via Coursera Applied AI with DeepLearning
IBM via Coursera Artificial Intelligence Algorithms Models and Limitations
LearnQuest via Coursera