Data Analysis for Genomics
Offered By: Harvard University via edX
Course Description
Overview
Advances in genomics have triggered fundamental changes in medicine and research. Genomic datasets are driving the next generation of discovery and treatment, and this series will enable you to analyze and interpret data generated by modern genomics technology.
Using open-source software, including R and Bioconductor, you will acquire skills to analyze and interpret genomic data. These courses are perfect for those who seek advanced training in high-throughput technology data. Problem sets will require coding in the R language to ensure mastery of key concepts. In the final course, you’ll investigate data analysis for several experimental protocols in genomics.
Enroll now to unlock the wealth of opportunities in modern genomics.
Syllabus
Course 1: Introduction to Bioconductor
The structure, annotation, normalization, and interpretation of genome scale assays.
Course 2: Case Studies in Functional Genomics
Perform RNA-Seq, ChIP-Seq, and DNA methylation data analyses, using open source software, including R and Bioconductor.
Course 3: Advanced Bioconductor
Learn advanced approaches to genomic visualization, reproducible analysis, data architecture, and exploration of cloud-scale consortium-generated genomic data.
Courses
-
We begin with an introduction to the relevant biology, explaining what we measure and why. Then we focus on the two main measurement technologies: next generation sequencing and microarrays. We then move on to describing how raw data and experimental information are imported into R and how we use Bioconductor classes to organize these data, whether generated locally, or harvested from public repositories or institutional archives. Genomic features are generally identified using intervals in genomic coordinates, and highly efficient algorithms for computing with genomic intervals will be examined in detail. Statistical methods for testing gene-centric or pathway-centric hypotheses with genome-scale data are found in packages such as limma, some of these techniques will be illustrated in lectures and labs.
Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.
These courses make up two Professional Certificates and are self-paced:
Data Analysis for Life Sciences:
- PH525.1x: Statistics and R for the Life Sciences
- PH525.2x: Introduction to Linear Models and Matrix Algebra
- PH525.3x: Statistical Inference and Modeling for High-throughput Experiments
- PH525.4x: High-Dimensional Data Analysis
Genomics Data Analysis:
- PH525.5x: Introduction to Bioconductor
- PH525.6x: Case Studies in Functional Genomics
- PH525.7x: Advanced Bioconductor
This class was supported in part by NIH grant R25GM114818.
HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.
HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.
Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form.
-
We will explain how to perform the standard processing and normalization steps, starting with raw data, to get to the point where one can investigate relevant biological questions. Throughout the case studies, we will make use of exploratory plots to get a general overview of the shape of the data and the result of the experiment. We start with RNA-seq data analysis covering basic concepts and a first look at FASTQ files. We will also go over quality control of FASTQ files; aligning RNA-seq reads; visualizing alignments and move on to analyzing RNA-seq at the gene-level : counting reads in genes; Exploratory Data Analysis and variance stabilization for counts; count-based differential expression; normalization and batch effects. Finally, we cover RNA-seq at the transcript-level : inferring expression of transcripts (i.e. alternative isoforms); differential exon usage. We will learn the basic steps in analyzing DNA methylation data, including reading the raw data, normalization, and finding regions of differential methylation across multiple samples. The course will end with a brief description of the basic steps for analyzing ChIP-seq datasets, from read alignment, to peak calling, and assessing differential binding patterns across multiple samples.
Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.
These courses make up two Professional Certificates and are self-paced:
Data Analysis for Life Sciences:
- PH525.1x: Statistics and R for the Life Sciences
- PH525.2x: Introduction to Linear Models and Matrix Algebra
- PH525.3x: Statistical Inference and Modeling for High-throughput Experiments
- PH525.4x: High-Dimensional Data Analysis
Genomics Data Analysis:
- PH525.5x: Introduction to Bioconductor
- PH525.6x: Case Studies in Functional Genomics
- PH525.7x: Advanced Bioconductor
This class was supported in part by NIH grant R25GM114818.
HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.
HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.
Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form.
-
In this course, we begin with approaches to visualization of genome-scale data, and provide tools to build interactive graphical interfaces to speed discovery and interpretation. Using knitr and rmarkdown as basic authoring tools, the concept of reproducible research is developed, and the concept of an executable document is presented. In this framework reports are linked tightly to the underlying data and code, enhancing reproducibility and extensibility of completed analyses. We study out-of-memory approaches to the analysis of very large data resources, using relational databases or HDF5 as "back ends" with familiar R interfaces. Multiomic data integration is illustrated using a curated version of The Cancer Genome Atlas. Finally, we explore cloud-resident resources developed for the Encyclopedia of DNA Elements (the ENCODE project). These address transcription factor binding, ATAC-seq, and RNA-seq with CRISPR interference.
Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.
These courses make up two Professional Certificates and are self-paced:
Data Analysis for Life Sciences:
- PH525.1x: Statistics and R for the Life Sciences
- PH525.2x: Introduction to Linear Models and Matrix Algebra
- PH525.3x: Statistical Inference and Modeling for High-throughput Experiments
- PH525.4x: High-Dimensional Data Analysis
Genomics Data Analysis:
- PH525.5x: Introduction to Bioconductor
- PH525.6x: Case Studies in Functional Genomics
- PH525.7x: Advanced Bioconductor
This class was supported in part by NIH grant R25GM114818.
HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.
HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.
Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form.
Taught by
Constance Chen, Peter Kraft, Shannan Ho Sui, Radhika Khetani, Vincent Carey, Oliver Hofmann, Meeta Mistry, X. Shirley Liu, Rafael Irizarry and Michael Love
Tags
Related Courses
Case Studies in Functional GenomicsHarvard University via edX Epigenetic Control of Gene Expression
University of Melbourne via Coursera Statistics for Genomic Data Science
Johns Hopkins University via Coursera