ETL Processing on Google Cloud Using Dataflow and BigQuery
Offered By: Google via Google Cloud Skills Boost
Course Description
Overview
In this lab you will build several Data Pipelines that will ingest data from a publicly available dataset into BigQuery.
Syllabus
- GSP290
- Overview
- Setup
- Task 1. Ensure that the Dataflow API is successfully enabled
- Task 2. Download the starter code
- Task 3. Create Cloud Storage Bucket
- Task 4. Copy files to your bucket
- Task 5. Create the BigQuery dataset
- Task 6. Build a Dataflow pipeline
- Task 7. Data ingestion
- Task 8. Review pipeline python code
- Task 9. Run the Apache Beam pipeline
- Task 10. Data transformation
- Task 11. Run the Apache Beam pipeline
- Task 12. Data enrichment
- Task 13. Review pipeline python code
- Task 14. Run the Apache Beam pipeline
- Task 15. Data lake to Mart
- Task 16. Review pipeline python code
- Task 17. Run the Apache Beam Pipeline
- Test your understanding
- Congratulations!
Tags
Related Courses
Google Cloud Big Data and Machine Learning Fundamentals en EspañolGoogle Cloud via Coursera Data Analysis with Python
IBM via Coursera Intro to TensorFlow 日本語版
Google Cloud via Coursera TensorFlow on Google Cloud - Français
Google Cloud via Coursera Freedom of Data with SAP Data Hub
SAP Learning