ETL Processing on Google Cloud Using Dataflow and BigQuery
Offered By: Google via Google Cloud Skills Boost
Course Description
Overview
In this lab you will build several Data Pipelines that will ingest data from a publicly available dataset into BigQuery.
Syllabus
- GSP290
- Overview
- Setup
- Task 1. Ensure that the Dataflow API is successfully enabled
- Task 2. Download the starter code
- Task 3. Create Cloud Storage Bucket
- Task 4. Copy files to your bucket
- Task 5. Create the BigQuery dataset
- Task 6. Build a Dataflow pipeline
- Task 7. Data ingestion
- Task 8. Review pipeline python code
- Task 9. Run the Apache Beam pipeline
- Task 10. Data transformation
- Task 11. Run the Apache Beam pipeline
- Task 12. Data enrichment
- Task 13. Review pipeline python code
- Task 14. Run the Apache Beam pipeline
- Task 15. Data lake to Mart
- Task 16. Review pipeline python code
- Task 17. Run the Apache Beam Pipeline
- Test your understanding
- Congratulations!
Tags
Related Courses
Serverless Data Analysis with Google BigQuery and Cloud Dataflow en FrançaisGoogle Cloud via Coursera Google Cloud Big Data and Machine Learning Fundamentals en Español
Google Cloud via Coursera Google Cloud Big Data and Machine Learning Fundamentals 日本語版
Google Cloud via Coursera Industrial IoT on Google Cloud
Google Cloud via Coursera Google Cloud Platform Big Data and Machine Learning Fundamentals em Português Brasileiro
Google Cloud via Coursera