Employee Attrition Prediction Using Machine Learning
Offered By: Coursera Project Network via Coursera
Course Description
Overview
In this project-based course, we will build, train and test a machine learning model to predict employee attrition using features such as employee job satisfaction, distance from work, compensation and performance. We will explore two machine learning algorithms, namely: (1) logistic regression classifier model and (2) Extreme Gradient Boosted Trees (XG-Boost). This project could be effectively applied in any Human Resources department to predict which employees are more likely to quit based on their features.
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Project Overview
- In this project-based course, we will build, train and test a machine learning model to predict employee attrition using features such as employee job satisfaction, distance from work, compensation and performance. We will explore two machine learning algorithms, namely: (1) logistic regression classifier model and (2) Extreme Gradient Boosted Trees (XG-Boost). This project could be effectively applied in any Human Resources department to predict which employees are more likely to quit based on their features.
Taught by
Ryan Ahmed
Related Courses
Statistical Learning with RStanford University via edX The Analytics Edge
Massachusetts Institute of Technology via edX Regression Models
Johns Hopkins University via Coursera Introduction à la statistique avec R
Université Paris SUD via France Université Numerique Statistical Reasoning for Public Health 2: Regression Methods
Johns Hopkins University via Coursera