Fundamentals of Current Flow
Offered By: Purdue University via edX
Course Description
Overview
Very different from what is taught in standard courses, "Fundamentals of Current Flow" provides a unified conceptual framework for ballistic and diffusive transport of both electrons and phonons - essential information for understanding nanoelectronic devices.
The traditional description of electronic motion through a solid is based on diffusive transport, which means that the electron takes a random walk from the source to the drain of a transistor, for example. However, modern nanoelectronic devices often have channel lengths comparable to a mean free path so that electrons travel ballistically, or "like a bullet."
Verified students taking this course will be required to complete three (3) proctored exams using the edX online Proctortrack software. To be sure your computer is compatible, see Proctortrack Technical Requirements.
Nanoscience and Technology MicroMasters ®
Fundamentals of Current Flow is one course in a growing suite of unique, 1-credit-hour short courses developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters® program in Nanoscience and Technology.
For further information and other courses offered, see the Nanoscience and Technology MicroMasters® page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.
Syllabus
Week 1: The New Perspective
1.1 Introduction
1.2 Two Key Concepts
1.3 Why Electrons Flow
1.4 Conductance Formula
1.5 Ballistic (B) Conductance
Week 2: The New Perspective (Continued)
1.6 Diffusive (D) Conductance
1.7 Connecting B to D
1.8 Angular Averaging
1.9 Drude Formula
1.10 Summing Up
Week 3: Energy Band Model
2.1. Introduction
2.2. E(p) or E(k) Relation
2.3. Counting States
2.4. Density of States
2.5. Number of Modes
Week 4: Energy Band Model (Continued)
2.6. Electron Density (n)
2.7. Conductivity vs. n
2.8 - 2.9 Bonus Lectures; NOT covered on exams
2.10 Summing Up
Week 5: What and Where is the Voltage
3.1 Introduction
3.2 A New Boundary Condition
3.3 Quasi-Fermi Levels (QFL's)
3.4 Current from QFL's
3.5 Landauer Formulas
3.6 - 3.10 Bonus Lectures; NOT covered on exams
Epilog: Looking Forward-From Semiclassical to Quantum; Bonus Lectures; NOT covered on exams
Text: S. Datta, "Lessons from Nanoelectronics", Part A: Basic Concepts,
World Scientific, Second Edition 2017
The manuscript will be available for download on the course's website.
Taught by
Supriyo Datta and Shuvro Chowdhury
Tags
Related Courses
Active Optical DevicesUniversity of Colorado Boulder via Coursera Advanced Converter Control Techniques
University of Colorado Boulder via Coursera Algorithms for Battery Management Systems
University of Colorado System via Coursera Approximation Methods
University of Colorado Boulder via Coursera Aprendiendo Python con circuitos digitales
Coursera Project Network via Coursera