Neuronal Dynamics
Offered By: École Polytechnique Fédérale de Lausanne via edX
Course Description
Overview
This course gives an introduction to the field of theoretical and computational neuroscience with a focus on models of single neurons. Neurons encode information about stimuli in a sequence of short electrical pulses (spikes). Students will learn how mathematical tools such as differential equations, phase plane analysis, separation of time scales, and stochastic processes can be used to understand the dynamics of neurons and the neural code.
Week 1: A first simple neuron model
Week 2: Hodgkin-Huxley models and biophysical modeling
Week 3: Two-dimensional models and phase plane analysis
Week 4: Two-dimensional models (cont.)/ Dendrites
Week 5: Variability of spike trains and the neural code
Week 6: Noise models, noisy neurons and coding
Week 7: Estimating neuron models for coding and decoding
Before your course starts, try the new edX Demo where you can explore the fun, interactive learning environment and virtual labs. Learn more.
This is a past/archived course. Certain features of this course may not be active, but we still invite you to explore the available materials.
Taught by
Wulfram Gerstner
Tags
Related Courses
Scientific ComputingUniversity of Washington via Coursera Differential Equations in Action
Udacity Initiation à la théorie des distributions
École Polytechnique via Coursera Everything is the Same: Modeling Engineered Systems
Northwestern University via Coursera Analyse numérique pour ingénieurs
École Polytechnique Fédérale de Lausanne via Coursera