Математические и инструментальные методы машинного обучения
Offered By: National Research Nuclear University MEPhI via edX
Course Description
Overview
Обработка и анализ больших данных представляет собой новую практическую задачу, требующую навыков работы с современным инструментарием. В настоящее время данные называют «нефтью 21 века», они накапливаются в корпоративных и государственных информационных системах, социальных сетях, веб-блогах и сайтах и потенциально являются ценным ресурсом для извлечения новых знаний, инсайтов для научных исследований, повышения эффективности и конкурентоспособности предприятий. Методы интеллектуального анализа больших данных, таким образом, представляют собой тот необходимый инструмент для высвобождения этого потенциала.
Курс «Математические и инструментальные методы машинного обучения» входит в число базовых при подготовке современных экономистов-математиков на уровне магистров. Изучение дисциплины позволит студентам получить и развивать навыки анализа и диагностики проблем экономики, современных методов их решения, а также ознакомиться с современной спецификой исследования операций в зарубежных и отечественных организациях.
Целями и задачами курса являются: формирование фундаментальных общеэкономических и естественнонаучных знаний; освоение математических и инструментальных методов машинного обучения; использование современных информационно-коммуникационных технологий в профессиональной деятельности; закрепление профессиональных навыков в области прогнозирования основных социально-экономических показателей деятельности предприятия, отрасли, региона и экономики в целом.
Компетенции по решению задач в анализе данных с помощью методов машинного обучения, будут получены студентами после прохождения курса «Математические и инструментальные методы машинного обучения». Изучение дисциплины позволит выработать навыки постановки и решения проблем развития организации, развить творческое мышление специалистов в области системного анализа и бизнес-моделирования, выработать умение решать управленческие проблемы в конкретной экономической ситуации.
Syllabus
Неделя 1. Задачи и методологии анализа данных
Урок 1. Введение в задачи анализа данных. Описание стандартов CRISP-DM, KDD, SEMMA. Основные понятия и методы анализа данных.
Урок 2. Среда интеллектуального анализа данных RapidMiner.
Неделя 2. Подготовка данных
Урок 3. Очистка, и обогащение данных.
Урок 4. Метод главных компонент. Матрица нагрузок и матрица счетов. График собственных значений. Критерий Кайзера. Вращение методом Варимакс. Интерпретация результатов факторного анализа.
Неделя 3. Визуализация данных
Урок 5. Визуализация данных. Понятие и основные задачи визуализации.
Урок 6. Подходы к визуализации: геометрический, древовидный.
Неделя 4. Понятие описательных статистик
Урок 7. Подходы к визуализации: геометрический, древовидный.
Понятие описательных статистик. Вычисление основных показателей положения и вариации. Построение частотных полигонов и гистограмм.
Неделя 5. Анализ связей
Урок 8. Корреляционный анализ/Понятие корреляционной связи. Коэффициент корреляции Пирсона. Ранговые коэффициенты. Коэффициенты корреляции для дихотомических и номинальных переменных.
Урок 9. Регрессионный анализ/Простая линейная регрессия. Проверка значимости уравнения линейной регрессии. Оценка качества уравнения линейной регрессии. Коэффициент детерминации. Доверительный интервал линейной регрессии.
Неделя 6. Кластеризация
Урок 10. Постановка задачи кластеризации/Понятие кластера. Обзор прикладных задач с использованием методов кластеризации. Обзор основных понятий и методов кластерного анализа.
Урок 11. Иерархические и итеративные методы кластеризации/Иерархическая агломеративная кластеризация. Дендрограммы. Дивизимные методы кластеризации. Метод МакКуина (к-средних).
Неделя 7. Мягкая и жёсткая кластеризация
Урок 12. Критерии качества кластеризации.
Неделя 8. Классификация
Урок 13. Постановка задачи классификации/Задача классификации с учителем. Понятие и свойства класса. Обзор основных методов классификации. Байесовская наивная классификация/Понятие байесовского классификатора.
Урок 14. Деревья решений в задачах классификации/Понятие деревьев решений. Примеры.
Неделя 9. Методы поиска ассоциативных правил
Урок 15. Понятие правил ассоциации. Метод Apriori. Метод FP-Growth. Примеры.
Урок 16. Понятие шаблона последовательных событий. Метод Apriori. Метод GSP.
Неделя 10. Интеллектуальный анализ текста
Урок 17. Токенизация. Векторизация. Регулярные выражения.
Урок 18. Стемминг. Лемматизация. Удаление стоп-слов. Анализ тональности.
Taught by
Василий Киреев
Tags
Related Courses
Accounting Data AnalyticsUniversity of Illinois at Urbana-Champaign via Coursera Анализ данных
Novosibirsk State University via Coursera Applied Machine Learning
Johns Hopkins University via Coursera Applying Data Analytics in Marketing
University of Illinois at Urbana-Champaign via Coursera Big Data: procesamiento y análisis
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera