A-level Further Mathematics for Year 13 - Course 1: Differential Equations, Further Integration, Curve Sketching, Complex Numbers, the Vector Product and Further Matrices
Offered By: Imperial College London via edX
Course Description
Overview
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams.
You will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include:
* Fluency – selecting and applying correct methods to answer with speed and efficiency
* Confidence – critically assessing mathematical methods and investigating ways to apply them
* Problem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions
* Constructing mathematical argument – using mathematical tools such as diagrams, graphs, the logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others
* Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied
Over eight modules, you will be introduced to
- Analytical and numerical methods for solving first-order differential equations
- The nth roots of unity, the nth roots of any complex number, geometrical applications of complex numbers.
- Coordinate systems and curve sketching.
- Improper integrals, integration using partial fractions and reduction formulae
- The area enclosed by a curve defined by parametric equations or polar equations, arc length and the surface area of revolution.
- Solving second-order differential equations
- The vector product and its applications
- Eigenvalues, eigenvectors, diagonalization and the Cayley-Hamilton Theorem.
Your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A -level further mathematics course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.
Syllabus
Module 1: First Order Differential Equations
- Solving first order differential equations by inspection
- Solving first order differential equations using an integrating factor
- Finding general and particular solutions of first-order differential equations
- Euler’s method for finding the numerical solution of a differential equation
- Improved Euler methods for solving differential equations.
Module 2: Further Complex Numbers
- The nth roots of unity and their geometrical representation
- The nth roots of a complex number and their geometrical representation
- Solving geometrical problems using complex numbers.
Module 3: Properties of Curves
- Cartesian and parametric equations for the parabola and rectangular hyperbola, ellipse and hyperbola.
- Graphs of rational functions
- Graphs of , , for given
- The focus-directrix properties of the parabola, ellipse and hyperbola, including the eccentricity.
Module 4: Further Integration Methods
- Evaluate improper integrals where either the integrand is undefined at a value in the range of integration or the range of integration extends to infinity.
- Integrate using partial fractions including those with quadratic factors in the denominator
- Selecting the correct substitution to integrate by substitution.
- Deriving and using reduction formula
Module 5: Further Applications of Integration
- Finding areas enclosed by curves that are defined parametrically
- Finding the area enclosed by a polar curve
- Using integration methods to calculate the arc length
- Using integration methods to calculate the surface area of revolution
Module 6: Second Order Differential Equations
- Solving differential equations of form y″ + ay′ + by = 0 where a and b are constants by using the auxiliary equation.
- Solving differential equations of form y ″+ a y ′+ b y = f(x) where a and b are constants by solving the homogeneous case and adding a particular integral to the complementary function
Module 7: The Vector (cross) Product
- The definition and properties of the vector product
- Using the vector product to calculate areas of triangles.
- The vector triple product.
- Using the vector triple product to calculate the volume of a tetrahedron and the volume of a parallelepiped
- The vector product form of the vector equation of a straight line
- Solving geometrical problems using the vector product
Module 8: Matrices - Eigenvalues and Eigenvectors
- Calculating eigenvalues and eigenvectors of 2 × 2 and 3 × 3 matrices.
- Reducing matrices to diagonal form.
- Using the Cayley-Hamilton Theorem
Taught by
Philip Ramsden and Phil Chaffe
Tags
Related Courses
Scientific ComputingUniversity of Washington via Coursera Differential Equations in Action
Udacity Initiation à la théorie des distributions
École Polytechnique via Coursera Everything is the Same: Modeling Engineered Systems
Northwestern University via Coursera Analyse numérique pour ingénieurs
École Polytechnique Fédérale de Lausanne via Coursera