Detect Anomalies in Game Transactions with ML and Sagemaker (German)
Offered By: Amazon Web Services via AWS Skill Builder
Course Description
Overview
Kursbeschreibung
Spieleentwickler, die mehrere Titel entwickeln und betreiben, führen die serverseitige Validierung der Transaktionsdaten von Spiele-Clients oft mehrfach durch. Dieser Kurs zeigt, wie sich mit einem zentralen Modell (oder mehreren Modellen pro Spiel) Server entlasten und ihre Reaktionszeiten verbessern lassen. Behandelt werden die verschiedenen Anomalien bei Transaktionsdaten von Spielen und wie Machine Learning (ML) Validierungen unterstützen kann.
Hinweis: Dieser Kurs verfügt über lokalisierte Transkripte/Untertitel. Der Vortrag ist auf Englisch.
Kursziele
In diesem Kurs lernen Sie Folgendes:
• Verstehen von Spieltransaktionen und zugehörigen Daten • Erkennen von Anomalien bei Spieltransaktionen • Überprüfen von Spielberichtsdaten anhand eines Beispiels • Verstehen der Machine-Learning-Architektur für Validierungen
Zielgruppe
Dieser Kurs richtet sich an:
• Spieleentwickler • Datenanalysten, die mit Spieltransaktionen arbeiten
Voraussetzungen
Kursteilnehmer sollten folgende Voraussetzungen erfüllen:
• Verständnis der grundlegenden Spielkonzepte • Grundkenntnisse über Machine-Learning-Prozesse
Kursinhalt:
• Spieletransaktionen • Anomalien • Spielberichtsdaten • Was ML leistet • Demo
Tags
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX