Deep Learning Applications for Computer Vision
Offered By: University of Colorado Boulder via Coursera
Course Description
Overview
In this course, you’ll be learning about Computer Vision as a field of study and research. First we’ll be exploring several Computer Vision tasks and suggested approaches, from the classic Computer Vision perspective. Then we’ll introduce Deep Learning methods and apply them to some of the same problems. We will analyze the results and discuss advantages and drawbacks of both types of methods. We'll use tutorials to let you explore hands-on some of the modern machine learning tools and software libraries. Examples of Computer Vision tasks where Deep Learning can be applied include: image classification, image classification with localization, object detection, object segmentation, facial recognition, and activity or pose estimation.
This course can be taken for academic credit as part of CU Boulder’s MS in Data Science or MS in Computer Science degrees offered on the Coursera platform. These fully accredited graduate degrees offer targeted courses, short 8-week sessions, and pay-as-you-go tuition. Admission is based on performance in three preliminary courses, not academic history. CU degrees on Coursera are ideal for recent graduates or working professionals. Learn more:
MS in Data Science: https://www.coursera.org/degrees/master-of-science-data-science-boulder
MS in Computer Science: https://coursera.org/degrees/ms-computer-science-boulder
Syllabus
- Introduction and Background
- In this module, you will learn about the field of Computer Vision. Computer Vision has the goal of extracting information from images. We will go over the major categories of tasks of Computer Vision and we will give examples of applications from each category. With the adoption of Machine Learning and Deep Learning techniques, we will look at how this has impacted the field of Computer Vision.
- Classic Computer Vision Tools
- In this module, you will learn about classic Computer Vision tools and techniques. We will explore the convolution operation, linear filters, and algorithms for detecting image features.
- Image Classification in Computer Vision
- In this module we will first review the challenges for object recognition in Classic Computer Vision. Then we will go through the steps of achieving object recognition and image classification in the Classic Computer Vision pipeline.
- Neural Networks and Deep Learning
- In this module we will compare how the image classification pipeline with neural networks differs than the one with classic computer vision tools. Then we will review the basic components of a neural network. We will conclude with a tutorial in Tensor flow where we will practice how to build, train and use a neural network for image classification predictions.
- Convolutional Neural Networks and Deep Learning Advanced Tools
- In this module we will learn about the components of Convolutional Neural Networks. We will study the parameters and hyperparameters that describe a deep network and explore their role in improving the accuracy of the deep learning models. We will conclude with a tutorial in Tensor Flow where we will practice building, training and using a deep neural network for image classification.
Taught by
Ioana Fleming
Tags
Related Courses
FinTech for Finance and Business LeadersACCA via edX Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera Advanced AI on Microsoft Azure: Ethics and Laws, Research Methods and Machine Learning
Cloudswyft via FutureLearn Ethics, Laws and Implementing an AI Solution on Microsoft Azure
Cloudswyft via FutureLearn Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera