Deep-Dive into Tensorflow Activation Functions
Offered By: Coursera Project Network via Coursera
Course Description
Overview
You've learned how to use Tensorflow. You've learned the important functions, how to design and implement sequential and functional models, and have completed several test projects. What's next? It's time to take a deep dive into activation functions, the essential function of every node and layer of a neural network, deciding whether to fire or not to fire, and adding an element of non-linearity (in most cases).
In this 2 hour course-based project, you will join me in a deep-dive into an exhaustive list of activation functions usable in Tensorflow and other frameworks. I will explain the working details of each activation function, describe the differences between each and their pros and cons, and I will demonstrate each function being used, both from scratch and within Tensorflow. Join me and boost your AI & machine learning knowledge, while also receiving a certificate to boost your resume in the process!
Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Syllabus
- Deep Dive into Tensorflow Activation Functions
- By the end of this project, you will learn about an exhaustive list of activation functions usable in Tensorflow and other frameworks. I will explain the working details of each activation function, describe the differences between each and their pros and cons, and I will demonstrate each function being used, both from scratch and within Tensorflow.
Taught by
Charles Ivan Niswander II
Related Courses
Computer Vision: The FundamentalsUniversity of California, Berkeley via Coursera Programming Languages
University of Virginia via Udacity Learn to Program: Crafting Quality Code
University of Toronto via Coursera Computational Photography
Georgia Institute of Technology via Coursera Algorithms: Design and Analysis, Part 2
Stanford University via Coursera