YoVDO

Statistical Techniques in Tableau

Offered By: DataCamp

Tags

Data Visualization Courses Data Analysis Courses Machine Learning Courses Tableau Courses Confidence Intervals Courses Forecasting Courses Clustering Courses Exploratory Data Analysis Courses Regression Models Courses

Course Description

Overview

Take your reporting skills to the next level with Tableau’s built-in statistical functions.

Take your reporting skills to the next level with Tableau’s built-in statistical functions. Using drag and drop analytics, you'll learn how to perform univariate and bivariate exploratory data analysis and create regression models to spot hidden trends. Working with real-world datasets, you’ll also use machine learning techniques such as clustering and forecasting. It’s time to dig deeper into your data!

Syllabus

  • Univariate exploratory data analysis
    • Exploratory data analysis, or EDA, is a fundamental step when doing data research. Getting the first insights of your data is easy in Tableau: you’ll be creating and interpreting tables, bar plots, histograms, and box plots in no time!
  • Measures of spread and confidence intervals
    • In this more conceptual chapter, you’ll dive deeper into the use of different measures of center and spread, and how they should be used in Tableau. You’ll learn about the use of the summary card, the difference between sample and population, and how variance, standard deviation, and confidence intervals can be calculated and visualized.
  • Bivariate exploratory data analysis
    • It's time to look at two variables at a time. Describing the relationship between two variables, or regression, is a great way to spot trends in your data. You'll learn how to find the best trend line, describe the trend model, and predict future observations, using dinosaur data!
  • Forecasting and clustering
    • In this last chapter, you’ll explore two more advanced statistical techniques: forecasting and clustering. Forecasting helps you detect recurring patterns in your time-series data, and can predict how these patterns will change in the future. With clustering, you’re able to detect patterns in unlabeled data, allowing you to slice and dice your dataset to reveal hidden insights.

Taught by

Maarten Van den Broeck

Related Courses

FinTech for Finance and Business Leaders
ACCA via edX
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera
Advanced AI on Microsoft Azure: Ethics and Laws, Research Methods and Machine Learning
Cloudswyft via FutureLearn
Ethics, Laws and Implementing an AI Solution on Microsoft Azure
Cloudswyft via FutureLearn
Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera