YoVDO

Network Analysis in the Tidyverse

Offered By: DataCamp

Tags

Tidyverse Courses Data Visualization Courses R Programming Courses Network Analysis Courses Hierarchical Clustering Courses

Course Description

Overview

Learn how to analyze and visualize network data in the R programming language using the tidyverse approach.

If you've ever wanted to understand more about social networks, information networks, or even the neural networks of our brains, then you need to know network science! It will demonstrate network analysis using several R packages, including dplyr, ggplot2, igraph, ggraph as well as visNetwork. You will take on the role of Interpol Analyst and investigate the terrorist network behind the Madrid train bombing in 2004. Following the course, you will be able to analyse any network with basic centrality and similarity measures and create beautiful and interactive network visualizations.

Syllabus

The hubs of the network
-The challenge in this chapter is to spot the most highly connected terrorists in the network. We will first import the dataset and build the network. Then we will learn how to visualize it in different layouts using ggraph package. Later on, we will compute two basic yet important centrality measures in network science - degree and strength. We will use them to spot highly connected terrorists. We will finally touch two alternative centrality measures, betweenness and closeness.

In its weakness lies its strength
-In this chapter we will spot the most influential ties among terrorists in the network. We will use a centrality measure on ties, called betweenness, and will learn how to visualize the network highlighting connections with high betweenness centrality. Moreover, we will provide some alternative evidence regarding Mark Granovetter's theory of strength of weak ties, confirming that looser connections are crucial as demonstrated in the Madrid terrorism network.

Connection patterns
-The challenge in this chapter is to discover pairs of similar (and dissimilar) terrorists. We will introduce the adjacency matrix as a mathematical representation of a network and use it to find terrorists with similar connection patterns. We will also learn how to visualize similar and dissimilar pairs of individuals using ggraph.

Similarity clusters
-In this chapter we will discover cells of similar terrorists. We will explore hierarchical clustering to find groups of similar terrorists building on the notion of similarity of connection patterns developed in the previous chapter. Furthermore, we will explore the visNetwork package to produce fulfilling interactive network visualizations.


Taught by

Massimo Franceschet

Related Courses

Genomic Data Science and Clustering (Bioinformatics V)
University of California, San Diego via Coursera
Analyse des données multidimensionnelles
Agrocampus Quest via France Université Numerique
Segmentation and Clustering
Udacity
Data Mining - Clustering and Association
University of Milano-Bicocca via EduOpen
Cluster Analysis
University of Texas Arlington via edX