Linear Algebra for Data Science in R
Offered By: DataCamp
Course Description
Overview
This course is an introduction to linear algebra, one of the most important mathematical topics underpinning data science.
Linear algebra is one of the most important set of tools in applied mathematics and data science. In this course, you’ll learn how to work with vectors and matrices, solve matrix-vector equations, perform eigenvalue/eigenvector analyses and use principal component analysis to do dimension reduction on real-world datasets. All analyses will be performed in R, one of the world’s most-popular programming languages.
Linear algebra is one of the most important set of tools in applied mathematics and data science. In this course, you’ll learn how to work with vectors and matrices, solve matrix-vector equations, perform eigenvalue/eigenvector analyses and use principal component analysis to do dimension reduction on real-world datasets. All analyses will be performed in R, one of the world’s most-popular programming languages.
Syllabus
- Introduction to Linear Algebra
- In this chapter, you will learn about the key objects in linear algebra, such as vectors and matrices. You will understand why they are important and how they interact with each other.
- Matrix-Vector Equations
- Many machine learning algorithms boil down to solving a matrix-vector equation. In this chapter, you learn what matrix-vector equations are trying to accomplish and how to solve them in R.
- Eigenvalues and Eigenvectors
- Matrix operations are complex. Eigenvalue/eigenvector analyses allow you
to decompose these operations into simpler ones for the sake of image recognition, genomic analysis, and more! - Principal Component Analysis
- “Big Data” is ubiquitous in data science and its applications. However, redundancy in these datasets can be problematic. In this chapter, we learn about principal component analysis and how it can be used in dimension reduction.
Taught by
Eric Eager
Related Courses
Advanced Machine LearningThe Open University via FutureLearn Advanced Statistics for Data Science
Johns Hopkins University via Coursera Algebra & Algorithms
Moscow Institute of Physics and Technology via Coursera Algèbre Linéaire (Partie 2)
École Polytechnique Fédérale de Lausanne via edX Linear Algebra III: Determinants and Eigenvalues
Georgia Institute of Technology via edX