YoVDO

Introduction to Data Visualization with ggplot2

Offered By: DataCamp

Tags

ggplot2 Courses Data Visualization Courses R Programming Courses

Course Description

Overview

Learn to produce meaningful and beautiful data visualizations with ggplot2 by understanding the grammar of graphics.

The ability to produce meaningful and beautiful data visualizations is an essential part of your skill set as a data scientist. This course, the first R data visualization tutorial in the series, introduces you to the principles of good visualizations and the grammar of graphics plotting concepts implemented in the ggplot2 package. ggplot2 has become the go-to tool for flexible and professional plots in R. Here, we’ll examine the first three essential layers for making a plot - Data, Aesthetics and Geometries. By the end of the course you will be able to make complex exploratory plots.

Syllabus

  • Introduction
    • In this chapter we’ll get you into the right frame of mind for developing meaningful visualizations with R. You’ll understand that as a communications tool, visualizations require you to think about your audience first. You’ll also be introduced to the basics of ggplot2 - the 7 different grammatical elements (layers) and aesthetic mappings.
  • Aesthetics
    • Aesthetic mappings are the cornerstone of the grammar of graphics plotting concept. This is where the magic happens - converting continuous and categorical data into visual scales that provide access to a large amount of information in a very short time. In this chapter you’ll understand how to choose the best aesthetic mappings for your data.
  • Geometries
    • A plot’s geometry dictates what visual elements will be used. In this chapter, we’ll familiarize you with the geometries used in the three most common plot types you’ll encounter - scatter plots, bar charts and line plots. We’ll look at a variety of different ways to construct these plots.
  • Themes
    • In this chapter, we’ll explore how understanding the structure of your data makes data visualization much easier. Plus, it’s time to make our plots pretty. This is the last step in the data viz process. The Themes layer will enable you to make publication quality plots directly in R. In the next course we'll look at some extra layers to add more variables to your plots.

Taught by

Rick Scavetta

Related Courses

Introducción a Data Science: Programación Estadística con R
Universidad Nacional Autónoma de México via Coursera
Programming in R for Data Science
Microsoft via edX
Data Science: Visualization
Harvard University via edX
Анализ данных в R. Часть 2
Bioinformatics Institute via Stepik
Mastering Software Development in R
Johns Hopkins University via Coursera