Intermediate Data Visualization with ggplot2
Offered By: DataCamp
Course Description
Overview
Learn to use facets, coordinate systems and statistics in ggplot2 to create meaningful explanatory plots.
This ggplot2 course builds on your knowledge from the introductory course to produce meaningful explanatory plots. Statistics will be calculated on the fly and you’ll see how Coordinates and Facets aid in communication. You’ll also explore details of data visualization best practices with ggplot2 to help make sure you have a sound understanding of what works and why. By the end of the course, you’ll have all the tools needed to make a custom plotting function to explore a large data set, combining statistics and excellent visuals.
This ggplot2 course builds on your knowledge from the introductory course to produce meaningful explanatory plots. Statistics will be calculated on the fly and you’ll see how Coordinates and Facets aid in communication. You’ll also explore details of data visualization best practices with ggplot2 to help make sure you have a sound understanding of what works and why. By the end of the course, you’ll have all the tools needed to make a custom plotting function to explore a large data set, combining statistics and excellent visuals.
Syllabus
- Statistics
- A picture paints a thousand words, which is why R ggplot2 is such a powerful tool for graphical data analysis. In this chapter, you’ll progress from simply plotting data to applying a variety of statistical methods. These include a variety of linear models, descriptive and inferential statistics (mean, standard deviation and confidence intervals) and custom functions.
- Coordinates
- The Coordinates layers offer specific and very useful tools for efficiently and accurately communicating data. Here we’ll look at the various ways of effectively using these layers, so you can clearly visualize lognormal datasets, variables with units, and periodic data.
- Facets
- Facets let you split plots into multiple panes, each displaying subsets of the dataset. Here you'll learn how to wrap facets and arrange them in a grid, as well as providing custom labeling.
- Best Practices
- Now that you have the technical skills to make great visualizations, it’s important that you make them as meaningful as possible. In this chapter, you’ll review three plot types that are commonly discouraged in the data viz community: heat maps, pie charts, and dynamite plots. You’ll learn the pitfalls with these plots and how to avoid making these mistakes yourself.
Taught by
Rick Scavetta
Related Courses
Calculus II: Multivariable FunctionsDelft University of Technology via edX GIS Foundations
University of Alaska Fairbanks via edX Çok değişkenli Fonksiyon I: Kavramlar / Multivariable Calculus I: Concepts
Koç University via Coursera Introduction to GIS Mapping
University of Toronto via Coursera AutoCAD: Construction Drawings
LinkedIn Learning