Dimensionality Reduction in R
Offered By: DataCamp
Course Description
Overview
Develop your intuition for when to reduce dimensionality in your data, and master the fundamentals of how to do so in R.
Real-world datasets often include values for dozens, hundreds, or even thousands of variables. Our minds cannot efficiently process such high-dimensional datasets to come up with useful, actionable insights. How do you deal with these multi-dimensional swarms of data points? How do you uncover and visualize hidden patterns in the data? In this course, you'll learn how to answer these questions by mastering three fundamental dimensionality reduction techniques - Principal component analysis (PCA), non-negative matrix factorisation (NNMF), and exploratory factor analysis (EFA).
Real-world datasets often include values for dozens, hundreds, or even thousands of variables. Our minds cannot efficiently process such high-dimensional datasets to come up with useful, actionable insights. How do you deal with these multi-dimensional swarms of data points? How do you uncover and visualize hidden patterns in the data? In this course, you'll learn how to answer these questions by mastering three fundamental dimensionality reduction techniques - Principal component analysis (PCA), non-negative matrix factorisation (NNMF), and exploratory factor analysis (EFA).
Syllabus
Principal component analysis (PCA)
-As a data scientist, you'll frequently have to deal with messy and high-dimensional datasets. In this chapter, you'll learn how to use Principal Component Analysis (PCA) to effectively reduce the dimensionality of such datasets so that it becomes easier to extract actionable insights from them.
Advanced PCA & Non-negative matrix factorization (NNMF)
-Here, you'll build on your knowledge of PCA by tackling more advanced applications, such as dealing with missing data. You'll also become familiar with another essential dimensionality reduction technique called Non-negative matrix factorization (NNMF) and how to use it in R.
Exploratory factor analysis (EFA)
-Become familiar with exploratory factor analysis (EFA), another dimensionality reduction technique that is a natural extension to PCA.
Advanced EFA
-Round out your mastery of dimensionality reduction in R by extending your knowledge of EFA to cover more advanced applications.
-As a data scientist, you'll frequently have to deal with messy and high-dimensional datasets. In this chapter, you'll learn how to use Principal Component Analysis (PCA) to effectively reduce the dimensionality of such datasets so that it becomes easier to extract actionable insights from them.
Advanced PCA & Non-negative matrix factorization (NNMF)
-Here, you'll build on your knowledge of PCA by tackling more advanced applications, such as dealing with missing data. You'll also become familiar with another essential dimensionality reduction technique called Non-negative matrix factorization (NNMF) and how to use it in R.
Exploratory factor analysis (EFA)
-Become familiar with exploratory factor analysis (EFA), another dimensionality reduction technique that is a natural extension to PCA.
Advanced EFA
-Round out your mastery of dimensionality reduction in R by extending your knowledge of EFA to cover more advanced applications.
Taught by
Alexandros Tantos
Related Courses
Продвинутые методы машинного обученияHigher School of Economics via Coursera Natural Language Processing with Classification and Vector Spaces
DeepLearning.AI via Coursera Data Modeling and Regression Analysis in Business
University of Illinois at Urbana-Champaign via Coursera Advanced Dimensionality Reduction in R
DataCamp Dimensionality Reduction in Python
DataCamp