Aplicaciones de ciencias de datos en los negocios actuales
Offered By: Universidad Anáhuac via edX
Course Description
Overview
La ciencia de los datos se encarga de la extracción, preparación, análisis y presentación visual de datos. Existen diferentes lenguajes de programación que otorgan posibilidades para realizar proyectos de ciencia de datos y nos permitan tomar decisiones. R es un lenguaje muy popular utilizado generalmente para realizar análisis estadísticos alrededor del mundo y amigable con la construcción de código para los usuarios.
Este curso se centra en la construcción de proyectos de ciencias de datos relevantes para los negocios de la nueva era digital. Todas las actividades y ejercicios se desarrollarán en lenguaje R, utilizando RStudio.
Te guiaremos paso a paso para que desarrolles y entiendas las diferentes herramientas que nos ofrece R para aplicarlas a proyectos de ciencia de datos que se implementa específicamente en los negocios de la era digital. Desarrollaremos prácticas que te ayuden a incrementar tus habilidades en la construcción de software y el análisis de datos.
Al finalizar este curso contarás con un portafolio de trabajos en ciencias de datos que te ayudará a demostrar tus conocimientos en el tema. Además, lograrás implementar proyectos de ciencias de datos aplicados a las problemáticas laborales en los negocios.
Syllabus
- Módulo 1. Desarrollo de sistema de recomendación de producto
Aprenderás diferentes técnicas de limpieza de datos, así como a diferencias los diferentes tipos de sistemas de recomendación. Analizarás los datos utilizando métodos exploratorios y seleccionarás el tipo de sistema de recomendación que mejor se adapte a los datos.
- Módulo 2. Desarrollo de un sistema para la detección de fraudes
Identificarás los diferentes tipos de sistemas de detección de fraudes y sus aplicaciones. Además, seleccionarás y desarrollarás el modelo a aplicar con base en los datos y evaluarás las mejores métricas para aplicar según el sistema que se desarrolle.
- Módulo 3. Desarrollo de modelo de puntaje crediticio
Desarrollarás técnicas de creación de modelos logísticos para identificar clientes válidos para un préstamo y validarás modelos mediante las técnicas de análisis de ROC.
- Módulo 4. Desarrollo de modelo para predecir costos
Aplicarás el método de regresión lineal para predecir los costos a establecer en periodos futuros y validarás tus modelos mediante la técnica de la raíz media cuadrática (RMS) para verificar la calidad de tu modelo.
Taught by
José Carlos Soto Monterrubio
Tags
Related Courses
Data Science BasicsA Cloud Guru Introduction to Machine Learning
A Cloud Guru Address Business Issues with Data Science
CertNexus via Coursera Advanced Clinical Data Science
University of Colorado System via Coursera Advanced Data Science Capstone
IBM via Coursera