Create Text Embeddings for a Vector Store using LangChain
Offered By: Google Cloud via Coursera
Course Description
Overview
This is a self-paced lab that takes place in the Google Cloud console. In this lab, you learn how to use LangChain to store documents as embeddings in a vector store. You will use the LangChain framework to split a set of documents into chunks, vectorize (embed) each chunk and then store the embeddings in a vector database.
Syllabus
- Create Text Embeddings for a Vector Store using LangChain
Taught by
Google Cloud Training
Related Courses
Prompt Templates for GPT-3.5 and Other LLMs - LangChainJames Briggs via YouTube Getting Started with GPT-3 vs. Open Source LLMs - LangChain
James Briggs via YouTube Chatbot Memory for Chat-GPT, Davinci + Other LLMs - LangChain
James Briggs via YouTube Chat in LangChain
James Briggs via YouTube LangChain Data Loaders, Tokenizers, Chunking, and Datasets - Data Prep
James Briggs via YouTube